Устройство электронного счетчика электроэнергии

Устройство электронного счетчика электроэнергии

Содержание
  1. Устройство электросчетчиков. Электрические и принципиальные схемы, принцип действия счетчиков электроэнергии. Как устроены индукционные, старые, бытовые, советские, квартирные, механические, домашние счетчики электроэнергии и электронные, новые, современные, промышленные, цифровые эл. счетчики электричества счетчики электроэнергии. Как работают эл. счетчики электричества и как устроены трехфазные, однофазные, многотарифные, импортные и отечественные электросчетчики. Программирование электросчетчиков.
  2. Реклама: Счетчики с пультом дистанционного отключения (пломбы, галограммы, паспорт, безупречное качество) —napulte.com Устройства "экономии" электроэнергии —k-r-m.ru
  3. Устройство и принцип работы индукционного однофазного старого о электросчетчика.
  4. Устройство и принцип работы индукционного трехфазного электросчетчика.
  5. Устройство и принцип работы гибридного электромеханического счетчика.
  6. Устройство и принцип работы электронного (цифрового) счетчика.
  7. Как устроен и работает электронный счетчик электроэнергии
  8. Принцип работы электросчетчиков
  9. Индукционные электросчетчики
  10. Электронные электросчетчики
  11. Post navigation

Устройство электросчетчиков. Электрические и принципиальные схемы, принцип действия счетчиков электроэнергии. Как устроены индукционные, старые, бытовые, советские, квартирные, механические, домашние счетчики электроэнергии и электронные, новые, современные, промышленные, цифровые эл. счетчики электричества счетчики электроэнергии. Как работают эл. счетчики электричества и как устроены трехфазные, однофазные, многотарифные, импортные и отечественные электросчетчики. Программирование электросчетчиков.

Реклама:
Счетчики с пультом дистанционного отключения
(пломбы, галограммы, паспорт, безупречное качество) —
napulte.com

Устройства "экономии" электроэнергии —k-r-m.ru

Существуют три основных вида электросчетчиков:

Индукционные или механические. Они наиболее простые и дешевые, но, имеют ряд недостатков, это большая погрешность, отсутствие возможности тарификации измерений, отсутствие возможности дистанционного снятия показаний.

Гибридные счетчики электроэнергии. В них используется цифровой интерфейс, индукционная или электрическая измерительная часть и механическое счетное устройство.

Электронные (цифровые) счетчики дороже, но имеют ряд преимуществ. Они обладают высокой точностью измерения, удобный интерфейс отображения (ЖКИ дисплей) и удобный набор функций, срок службы счетчиков составляет 30 лет. В электронных счетчиках есть возможность установки разных тарифов, и возможность включения в общую систему (сеть АСКУЭ) с возможностью дистанционного снятия показаний. Как правило, такие счетчики обладают автокорректировкой по температуре.

Устройство и принцип работы индукционного однофазного старого о электросчетчика.

В зазоре между обмотки напряжения 7 магнитопроводом 8 токовой обмотки 13 и магнитопроводом 10 расположен подвижной алюминиевый диск 17, на оси. на пружинящем подпятнике и опоре. Через ведущий червяк. укрепленный на оси, и зубчатые колеса, вращение диска передается к счетному механизму.Устройство электронного счетчика электроэнергии
Для крепления счетного механизма к корпусу имеется отверстие. Токовая обмотка 13, включается последовательно в исследуемую цепь, состоит из небольшого числа витков, намотанных толстым проводом.
Обмотка напряжения 7, включена в цепь параллельно, состоит из большего числа витков, намотанных тонким проводом.
Когда к этой обмотке приложено переменное напряжение, а по токовой обмотке протекает ток, в магнитопроводах 8 и 10 появляются переменные магнитные потоки, замыкающиеся через диск. Переменные магнитные потоки, пронизывают диск, наводят в нем вихревые токи.
Эти токи, взаимодействуют с соответствующими потоками, генерируют вращающий момент, действующий на подвижный диск.
При помощи постоянного магнита 4, создается тормозной (противодействующий) момент.
Установившаяся скорость диска наступает при равенстве вращающего и тормозного моментов.
Число оборотов диска будет пропорционально израсходованной энергии или установившаяся равномерная скорость вращения будет пропорциональна мощности.
Трение в механизме индукционного электросчетчика приводит к появлению погрешностей в показаниях. Особенно велико влияние сил трения при малых токах нагрузках счетчика, (погрешность достигает 12 — 15%).
Для уменьшения влияния сил трения применяют специальное устройство, компенсатором трения. На рисунке это пластинка, перемещение которой, регулируют величину компенсационного момента. Этот момент пропорционален напряжению. При повышении напряжения, это момент может оказаться больше момента трения и появляется самоход назад, для устранения которого предусмотрено устройство в виде стальных крючка и пластинки (собачки).
Важным параметром электросчетчиков электрической энергии переменного тока является чувствительность. Порог, под которым понимают минимальную мощность, в процентах от номинальной, при которой диск начинает безостановочно вращаться. По ГОСТу, это значение для счетчиков всех классов точности должно быть не менее 0,5 — 1,5%. Однофазные индукционные счётчики преимущественно используются в квартирной электропроводке.

Устройство и принцип работы индукционного трехфазного электросчетчика.

Устройство электронного счетчика электроэнергии

Индукционный трех фазный электросчетчик работает по томуже принципу что и однофазный.
В индукционной системы подвижная часть (диск) вращается во время потребления электроэнергии. Диск вращается за счёт вихревых токов, наводимых в нём магнитным полем катушек счётчика, магнитное поле вихревых токов взаимодействует с магнитными полями катушек счётчика.
Один из трех элементов счетчика содержит два электромагнита; обмотка одного включена в сеть последовательно (токовая обмотка), другого – параллельно (обмотка напряжения). Между этими электромагнитами расположен вращающийся алюминиевый диск, его ось которого соединена со счетным механизмом счётчика, а также со вторым диском, на котором установлено еще два (на две фазы) элемента. Третий диск отсутствует, ради экономии. Протекающие по обмоткам электромагнитов токи создают магнитные потоки. Под действием которых у диска появляется вращающий момент. Чем больше расходуется электроэнергии, тем больший ток в контролируемой цепи и в токовой обмотке счётчика и тем больше момент и скорость вращения диска. Трёхфазные электросчетчики на напряжение 380 В применяются в основном для учёта электроэнергии на подстанциях, предприятиях и т. п.

Устройство и принцип работы гибридного электромеханического счетчика.
Устройство электронного счетчика электроэнергии

Гибридный счетчики электроэнергии необходимо разделять на несколько разных узлов: схема счетчика, блок питания, корректирующие цепи и т. д. Блок питания преобразует переменное входное напряжение в низкое постоянное и обеспечивает питание электронных цепей счетчика. Схема счетчика измеряет ток, который потребляется нагрузкой, с помощью трансформатора тока (датчика), через который и протекает измеряемый ток. Другие блоки счетчика электроэнергии выполняют ряд различных функций: вывод показаний и управление через Ethernet, WiMax, Wi-Fi, ZeegBee сети, управление дисплеем, термокомпенсация счетчика, коррекция точности, и т. п.
Счетчик состоит из микросхемы обработки, трех трансформаторов тока, цепи питания, электромеханического счетного устройства и дополнительных цепей.
В качестве регистра электроэнергии используется простое электромеханическое отсчетное устройство, в котором применен двухфазный шаговый двигатель. Электропитание счетчика обеспечивает источник, построенный на токовом трансформаторе и двухполупериодном выпрямителе.

Устройство и принцип работы электронного (цифрового) счетчика.

До недавнего времени вопрос измерения электроэнергии, сводился к применению электромеханических счётчиков, принцип работы основан на подсчёте оборотов металлического диска, вращающегося в переменном магнитном поле, которое, создаётся двумя электромагнитами. Магнитный поток должен быть пропорционален току, текущему через нагрузку, а второго — напряжению. При этом скорость вращения диска пропорциональна мощности, а количество оборотов — потребляемой энергии.

Развитие микроэлектроники наметило переворот в области создания промышленных и бытовых систем учета, который, в первую очередь, связан с использованием систем управления на базе микроконтроллеров.

В цифровых системах учета достижим практически любой класс точности, при выборе соответствующей элементной базы и алгоритмов обработки информации. Отсутствие механических частей значительно повышает надёжность.

Обработка информации в цифровом виде позволяет одновременно подсчитывать как активную, так и реактивную составляющие мощности, это является важным, например, при учёте энергии в трёхфазных сетях.

Появляется возможность создания многотарифных электросчётчиков. При работе такого системе учета значение накопленной энергии записывается в буфер текущего тарифа. Выбор тарифа осуществляется автоматически. Например, “льготный” тариф может быть установлен на одно время, “пиковый” тариф — “штрафной” тариф, во второе, а в остальное время будет действовать “основной” тариф.

В простейшем случае цифровой системы учета, когда требуется лишь измерение импульсов, вывод информации на дисплей и защита при аварийных сбоях (как, фактически, цифрового аналога механических счётчиков), система может быть построена, на базе простейшего микроконтроллера.Устройство электронного счетчика электроэнергии

Блок-схема такого счетчика электроэнергии представлена на рисунке. Сигналы, поступают через соответствующие трансформаторные датчики на входы микросхемы-преобразователя. С её выхода снимается частотный сигнал, поступающий на вход микроконтроллера. Микроконтроллер складывает количество пришедших импульсов, преобразовывая его для получения количества энергии в Вт·ч. По мере накопления каждой единицы, значение накопленной энергии выводится на монитор и записывается во FLASH-память. Если происходит сбой, исчезновение напряжения сети, информация о накопленной энергии сохраняется в памяти. После восстановления напряжения эта информация считывается микроконтроллером и выводится на индикатор, счёт продолжается с этой величины. Этот алгоритм потребовал менее 1 Кбайт памяти микроконтроллера. В качестве дисплея может использоваться простейший 6-. 8-разрядный 7-сегментный ЖКИ, управляемый контроллером.

В случае реализации многотарифного электросчетчика, устройство должно обеспечивать обмен информацией с внешним миром по последовательному интерфейсу. Интерфейс может использоваться для задания тарифов, включения и установки таймера времени, получения информацииУстройство электронного счетчика электроэнергии о накопленных значениях электроэнергии и так далее. Блок-схема такого устройства, реализованного на микроконтроллере фирмы Motorola представлена на рисунке.

Рассмотрим алгоритм работы электросчётчика. Память энергонезависимого ОЗУ разбита на 13 банков, в каждом хранится информация о накопленной электроэнергии по четырём тарифам: общем, льготном, пиковом, штрафном. В первом банке учет производятся с момента начала эксплуатации электросчётчика, следующие 12 банков соответствуют накоплениям за 11 предыдущих и за текущий месяцы. Учет за текущий месяц записываются в соответствующий банк, таким образом, имеется возможность узнать, сколько было накоплено энергии за любой из 11 последних месяцев. Перед началом работы счётчика на заводе-изготовителе обнуляют содержимое банков памяти, и накопление начинается с нулевых значений.

Смена тарифов осуществляется по временным условиям: для каждого дня недели свое тарифное расписание, то есть времена начала основного и льготного тарифов — для пикового тарифа. 16 произвольных дней в году могут быть определены как праздничные, в эти дни работает тарифное расписание как для воскресенья.

В электросчётчике может быть установлен режим ограничения по количеству израсходованной за месяц энергии и по мощности. В тех режимах счётчик фиксирует количество электроэнергии, израсходованной выше лимита. При превышении установленного лимита электроэнергии производится или переход на накопление по штрафному тарифу, или отключение пользователя от энергосети. Штрафной тариф может быть установлен принудительно (по интерфейсу связи) в случае, например, задолженности.

При включении счётчика в сеть (например, после очередного пропадания напряжения в сети) фиксируется время и дата момента для возможности контроля. Также предусмотрена запись даты несанкционированного снятия крышки счетчика.

Через особый разъём к счётчику можно подключить ридер для считывания информации с индивидуальной электронной карточки о объеме энергии, оплаченном потребителем. При исчерпании лимита счётчик может отключить потребителя от электросети.

Устройство, принципиальные схемы, принцип действия электросчетчиков и систем аскуэ. Как устроены, из чего состоят и как работают старые, бытовые, советские, квартирные, механические, домашние, электронные, новые, современные, промышленные, цифровые, трехфазные, однофазные, многотарифные, импортные, нового образца и отечественные электросчетчиков (эл. счетчиков электроэнергии, электричества, электрической электро энергии). (Меркурий 200, 230, СЭТ-4ТМ, SL 7000, СОЭ, НИК, СО-2).

Как устроен и работает электронный счетчик электроэнергии

Основное назначение этого прибора сводится к постоянному измерению потребляемой мощности контролируемого участка электрической схемы и отображению ее величины в удобном для человека виде. Элементная база использует твердотельные электронные компоненты, работающие на полупроводниках или микропроцессорных конструкциях.

Такие приборы выпускают для работы с цепями тока:

1. постоянной величины;

2. синусоидальной гармонической формы.

Приборы учета электроэнергии постоянного тока работают только на промышленных предприятиях, эксплуатирующих мощное оборудование с большим потреблением постоянной мощности (электрифицированный железнодорожный транспорт, электромобили…). В бытовых целях они не используются, выпускаются ограниченными партиями. Поэтому в дальнейшем материале этой статьи их рассматривать не будем, хотя принцип их работы отличается от моделей, работающих на переменном токе, в основном конструкцией датчиков тока и напряжения.

Электронные счетчики мощности переменного тока изготавливаются для учета энергии электрических устройств:

1. с однофазной системой напряжения;

2. в трехфазных цепях.

Конструкция электронного счетчика

Вся элементная база располагается внутри корпуса, снабженного:

клеммной колодкой для подключения электрических проводов;

панелью ЖКИ дисплея;

органами управления работой и передачи информации от прибора;

печатной платой с твердотельными элементами;

Внешний вид и основные пользовательские настройки одной из многочисленных моделей подобных устройств, выпускаемых на предприятиях республики Беларусь, представлен на картинке.

Устройство электронного счетчика электроэнергии

Работоспособность такого электросчетчика подтверждается:

нанесенным клеймом поверителя, подтверждающим прохождение метрологической поверки прибора на испытательном стенде и оценке его характеристик в пределах заявленного производителем класса точности;

ненарушенной пломбой предприятия энергонадзора, ответственного за правильное подключение счетчика к электрической схеме.

Внутренний вид плат подобного прибора показан на картинке.

Устройство электронного счетчика электроэнергии

Здесь нет никаких движущихся и индукционных механизмов. А наличие трех встроенных трансформаторов тока, используемых в качестве датчиков с таким же количеством явно просматриваемых каналов на монтажной плате, свидетельствуют о трехфазной работе этого устройства.

Электротехнические процессы, учитываемые электронным счетчиком

Работа внутренних алгоритмов трехфазных или однофазных конструкций происходит по одним и тем же законам, за исключением того, что в 3-х фазном, более сложном устройстве, идет геометрическое суммирование величин каждого из трех составляющих каналов.

Поэтому принципы работы электронного счетчика будем преимущественно рассматривать на примере однофазной модели. Для этого вспомним основные законы электротехники, связанные с мощностью.

Ее полная величина определяется составляющими:

реактивной (суммы индуктивной и емкостной нагрузок).

Устройство электронного счетчика электроэнергии

Ток, протекающий по общей цепи однофазной сети, одинаков на всех участках, а падение напряжения на каждом ее элементе зависит от вида сопротивления и его величины. На активном сопротивлении оно совпадает с вектором проходящего тока по направлению, а на реактивном отклоняется в сторону. Причем на индуктивности оно опережает ток по углу, а на емкости — отстает.

Устройство электронного счетчика электроэнергии

Электронные счетчики способны учитывать и отображать полную мощность и ее активную и реактивную величину. Для этого производятся замеры векторов тока с напряжением, подведенных на его вход. По значению отклонения угла между этими входящими величинами определяется и рассчитывается характер нагрузки, предоставляется информация обо всех ее составляющих.

В различных конструкциях электронных счетчиков набор функций неодинаков и может значительно отличаться своим назначением. Этим они кардинально выделяются от своих индукционных аналогов, которые работают на основе взаимодействия электромагнитных полей и сил индукции, вызывающих вращение тонкого алюминиевого диска. Конструктивно они способны замерять только активную или реактивную мощность в однофазной либо трехфазной цепи, а значение полной — приходится вычислять отдельно вручную.

Принцип измерения мощности электронным счетчиком

Схема работы простого прибора учета с выходными преобразователями показана на рисунке.

Устройство электронного счетчика электроэнергии

В нем для замера мощности используются простые датчики:

тока на основе обычного шунта, через который пропускается фаза цепи;

напряжения, работающего по схеме широко известного делителя.

Сигнал, снимаемый таким датчиками, мал и его увеличивают с помощью электронных усилителей тока и напряжения, после которых происходит аналогово-цифровая обработка для дальнейшего преобразования сигналов и их перемножения с целью получения величины, пропорциональной значению потребляемой мощности.

Далее производится фильтрация оцифрованного сигнала и вывод на устройства:

Применяемые в этом схеме входные датчики электрических величин не обеспечивают измерения с высоким классом точности векторов тока и напряжения, а, соответственно, и расчет мощности. Эта функция лучше реализуется измерительными трансформаторами.

Схема работы однофазного электронного счетчика

В ней измерительный ТТ включен в разрыв фазного провода потребителя, а ТН подключен к фазе и нулю.

Устройство электронного счетчика электроэнергии

Сигналы с обоих трансформаторов не нуждаются в усилении и направляются по своим каналам на блок АЦП, осуществляющий преобразование их в цифровой код мощности и частоты. Дальнейшие преобразования выполняет микроконтроллер, осуществляющий управление:

ОЗУ — оперативным запоминающим устройством.

Через ОЗУ выходной сигнал может передаваться дальше в канал информации, например, с помощью оптического порта.

Функциональные возможности электронных счетчиков

Низкая погрешность измерения мощности, оцениваемая классом точности 0,5 S или 02 S разрешает эксплуатировать эти приборы в целях коммерческого учета использованной электроэнергии.

Конструкции, предназначенные для замеров в трехфазных схемах, могут работать в трех или четырехпроводных электрических цепях.

Электронный счетчик может непосредственно подключаться к действующему оборудованию или иметь конструкцию, позволяющую использовать промежуточные, например, высоковольтные измерительные трансформаторы. В последнем случае, как правило, осуществляется автоматический перерасчет измеряемых вторичных величин в первичные значения тока, напряжения и мощности, включая активную и реактивную составляющие.

Счетчик фиксирует направление полной мощности со всеми ее составляющими в прямом и обратном направлении, хранит эту информацию с привязкой ко времени. При этом пользователю можно снимать показания энергии по ее приращению за определенный период времени, например, текущие или выбранные из календаря сутки, месяц или год либо — накоплению на определенное назначенное время.

Фиксация значений активной и реактивной мощности за определенный период, например, 3 или 30 минут, как и быстрый вызов ее максимальных значений в течение месяца значительно облегчает анализ работы энергетического оборудования.

В любой момент можно просмотреть мгновенные показатели активного и реактивного потребления, действующего тока, напряжения, частоты в каждой фазе.

Наличие функции многотарифного учета энергии с использованием нескольких каналов передачи информации расширяет условия коммерческого применения. При этом создаются тарифы для определенного времени, например, каждого получаса выходного либо рабочего дня по сезонам или месяцам года.

Для удобства работы пользователя на дисплее выводится рабочее меню, между пунктами которого можно перемещаться, используя рядом расположенные органы управления.

Электронный счетчик электроэнергии позволяет не только считывать информацию непосредственно с дисплея, но и просматривать ее через удаленный компьютер, а также осуществлять ввод дополнительных данных или их программирование через оптический порт.

Установка пломб на счетчик производится в два этапа:

1. на первом уровне доступ внутрь корпуса прибора запрещается службой технического контроля завода после изготовления счетчика и прохождения им государственной поверки;

2. на втором уровне пломбирования блокируется доступ к клеммам и подключенным проводам представителем энергоснабжающей организации или энергонадзора.

Все события снятия и установки крышки оборудованы сигнализацией, срабатывание которой фиксируется в памяти журнала событий с привязкой ко времени и дате.

Система паролей предусматривает ограничение пользователей к доступу информации и может содержать до пяти ограничений.

Нулевой уровень полностью снимает ограничения и позволяет просматривать все данные местно или удаленно, синхронизировать время, корректировать показания.

Первый уровень пароля дополнительного доступа предоставляется работникам монтажной или эксплуатационной организации систем АСКУЭ для наладки оборудования и записи параметров, не оказывающих влияние на коммерческие характеристики.

Второй уровень пароля основного доступа назначается ответственным работником энергонадзора на счетчике, прошедшем наладку и полностью подготовленном к работе.

Третий уровень основного доступа дается работникам энергонадзора, осуществляющим снятие и установку крышки со счетчика для доступа к его клеммным зажимам или проведению удаленных операций через оптический порт.

Четвертый уровень предоставляет возможности установки аппаратных ключей на плату, удаление всех установленных пломб и возможность работы через оптический порт для усовершенствования конфигурации, замены калибровочных коэффициентов.

Приведенный перечень возможностей, которыми обладает электронный счетчик электроэнергии, является общим, обзорным. Он может выставляться индивидуально и отличаться даже на каждой модели одного производителя.

Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.

Информация и обучающие материалы для начинающих электриков.

Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.

Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+

Перепечатка материалов сайта запрещена.

Устройство электронного счетчика электроэнергии

Принцип работы электросчетчиков

У каждого из нас в квартире, доме, гараже присутствует прибор учета электроэнергии, проще говоря электросчетчик. Он подсчитывает количество потребленной активной электроэнергии за определенное количество времени. Ранее применялись индукционные электросчетчики, построенные на основе индукционного механизма, но при современном развитии технических средств их активно начали вытеснять электронные электросчетчики. Давайте более подробно рассмотрим каждый из них.

Индукционные электросчетчики

Как говорилось выше, индукционный электросчетчик работает на основе индукционного механизма, схема которого приведена ниже:

Устройство электронного счетчика электроэнергии

Итак, состоит он из двух неподвижных катушек (обмоток) 1 и 2 которые в пространстве смещаются друг относительно друга на угол равный 90 0. Соответственно и магнитные потоки, протекающие через обмотки, при подключении их к сети будут сдвинуты друг относительно друга. В результате чего возникнет бегущее магнитное поле, которое порождает вращающий момент, который начнет вращать алюминиевый диск 4 расположенный в магнитном поле катушки. Во избежание инерционного вращения диска, после снятия с катушек напряжений, или слишком быстрого вращения при минимальной нагрузке, на диск также будет воздействовать постоянный магнит 3, который будет обеспечивать тормозной момент. Среднее значение вращающего момента будет равно:

Как и в обычном ваттметре в электросчетчике есть две обмотки, тока и напряжения. Обмотка тока выполнена толстым проводом, соответствующим номинальному току и включается в цепь последовательно.

Обмотка напряжения выполнена тонким проводом (0,06 – 0,12 мм) с большим количеством витков и подключается к цепи параллельно.

Устройство электронного счетчика электроэнергии

Все эти обмотки уже расположены внутри прибора и не требует особой схемы включения. В нем есть только два провода ввода (для однофазных фаза — ноль) и вывода. Счетчики имеют класс точности 1,0; 2,0; 2,5. Они могут выпускаться на различные токи напряжением 127В, 220В. Также трехфазные могут быть 127В, 220В, 380В, а также на токи до 2000 А и 35 кВ но подключаемые через измерительные трансформаторы.

Принцип работы индукционного трехфазного аналогичен однофазному, но так как при использовании трехфазных систем возможны различные схемы включения (треугольник, звезда), необходимо предварительно изучить возможности выбранного устройства.

Электронные электросчетчики

В отличии от индукционных приборов электронные не используют вращающихся механических частей. В них все реализуется с помощью микропроцессорной техники, схема ниже:

Устройство электронного счетчика электроэнергии

ТТ – трансформатор тока

С помощью датчиков тока ДТ и датчиков напряжения ДН снимаются значения тока и напряжения сети. После датчиков сигналы поступают на аналогово-цифровой преобразователь, где сигнал с аналогового превращается в цифровой и поступает на микроконтроллер. Микроконтроллер в свою очередь производит вычисления и отправляет данные на дисплей или через интерфейс на другое устройство. С помощью таких электросчетчиков можно централизовано вести учет электроэнергии различных линий.

Устройство электронного счетчика электроэнергии

Главным достоинством электронных электросчетчиков над индукционными является:

  • отсутствие вращающихся частей, что снижает вероятность поломки;
  • возможность вести учет электроэнергии по различным тарифам с автоматическим переключением по времени суток (многотарифные счетчики);
  • меньшая погрешность измерения, особенно при малых нагрузках;
  • возможность передачи данных на расстояние через интерфейсы, что не требует постоянного присутствия для снятия данных;
  • удобность применения;
  • большая стоимость;
  • большая вероятность выхода из строя при больших скачках напряжения и тока сети;
  • более дорогостоящий и трудный ремонт;
  • выше чувствительность к климатическим условиям (например перепад температур);
  • труднее диагностировать неисправности;

Как подключается счетчики к сети однофазной или трехфазной вы можете посмотреть на видео ниже:

Post navigation

Источники: http://www.habarok.com/ustroistvo/ustroistvo.shtm, http://electrik.info/device/970-kak-ustroen-i-rabotaet-elektronnyy-schetchik-elektroenergii.html, http://elenergi.ru/princip-raboty-elektroschetchikov.html

Рейтинг
( Пока оценок нет )
Всё об электрике в доме
Добавить комментарий