- Ремонт люминесцентного светильника: инструкция
- Принцип работы и устройство люминесцентного светильника
- Ремонт люминесцентного светильника. Основные неисправности и их устранение. Инструкция
- Параметры заменяемых элементов
- Устройство и схема включения люминесцентной лампы
- Устройство и описание ЛЛ
- Принцип работы ЛЛ
- Бездроссельное включение люминесцентных ламп: схемы
- Как запускается ЛЛ с ЭПРА
- Применение умножителей напряжения
- Бесстартерная схема включения люминесцентных ламп
- Как включить сгоревшую лампу?
- Заключение
- Достоинства и недостатки люминесцентной лампы
Ремонт люминесцентного светильника: инструкция
Светильники с люминесцентными лампами широко распространены. Они используются для освещения офисов, магазинов, производственных помещений. В быту их используют не так часто, поскольку они имеют большие габаритные размеры и неуклюжий дизайн.
Люминесцентные светильники труднее поддаются ремонту, так как включают в себя ряд элементов, необходимых для запуска и поддержания в рабочем состоянии разряда в лампе. А чем больше деталей – тем ниже надежность.
Принцип работы и устройство люминесцентного светильника
Чтобы отыскать неисправность в люминесцентных светильниках, нужно знать принцип их работы. Источник света в них – лампы, представляющие собой колбу цилиндрической (или U-образной) формы, из которой выкачан воздух. Вместо него в лампе находятся пары ртути и инертный газ. По краям колбы расположены нити накаливания, каждая из них имеет два контакта.
Для запуска лампы служит стартер – газоразрядная лампа, последовательно с которой включен помехоподавляющий конденсатор. Контакты его замыкаются при подаче напряжения за счет возникновения тлеющего разряда между электродами, один из которых или оба выполнены биметаллическими. За счет разряда, который можно наблюдать через корпус стартера или смотровое окно в нем, электроды нагреваются и замыкаются между собой.
Ток протекает через последовательно соединенные нити накаливания лампы, замкнутые контакты стартера и дроссель. Нити, покрытые специальным составом, нагреваются, около них появляются свободные электроны. Этот процесс называется термоэлектронной эмиссией. Электроны нужны для того, чтобы в пространстве лампы появились свободные заряды, способные проводить электрический ток. В процессе разогрева нитей накала индуктивное сопротивление дросселя ограничивает ток через них.
Электроды стартера остывают и размыкаются. В этот момент в дросселе возникает ЭДС самоиндукции. Импульс высокого напряжения, складываясь с напряжением сети, мгновенно разгоняет электроны внутри лампы, они приходят в движение. Сталкиваясь на своем пути с молекулами инертного газа, они ионизируют их. Ионы движутся в противоположную сторону. В результате процесса ионизации в лампе возникает устойчивый разряд, ток которого ограничивается индуктивностью дросселя.
Принцип работы люминесцентной лампы
Загоревшаяся лампа шунтирует стартер, выводя его из работы. Если по каким-то причинам лампа не зажглась, процесс повторяется циклически, либо до ее запуска, либо до выхода из строя одного из компонентов.
В схеме светильника параллельно клеммам питающей сети устанавливается конденсатор, предназначенный для фильтрации помех при работе.
Ремонт люминесцентного светильника. Основные неисправности и их устранение. Инструкция
Если светильник не пытается зажечься, перед поиском неисправности в нем нужно измерить напряжение на его входных клеммах. Если оно есть, то последовательность поиска такова:
- Слегка покрутить лампы вокруг продольной оси. При правильной установке контакты ее должны располагаться параллельно плоскости светильника. Это положение определяется по максимуму усилия вращению или при повторной установке с запоминанием их положения в пространстве.
- Заменить стартер на заведомо исправный. Электрики, обслуживающие помещения с люминесцентными светильниками, всегда имеют под рукой запас стартеров для проверки. При его отсутствии можно временно снять стартер с работающего светильника. При этом можно его оставить в работе – стартер не влияет на работоспособность уже зажженной люминесцентной лампы.
- Проверить исправность лампы (ламп). В светильниках, имеющих две лампы, они включены последовательно. Стартер и дроссель для них общие. Четырехламповые светильники конструктивно представляют собой два двухламповых, объединенных в одном корпусе. Поэтому при выходе из строя одной лампы, вместе с ней гаснет и вторая.
- Исправность ламп проверяют методом замены на исправные. Можно измерить мультиметром сопротивление нитей накала – оно не превышает десятков Ом. Почернение изнутри колбы лампы в районе нитей не свидетельствует о неисправности, но проверке она подвергается в первую очередь.
- Если стартер и лампа исправны, проверяется дроссель. Его сопротивление, измеренное мультиметром, не превышает сотен Ом. Можно воспользоваться индикаторной отверткой, проверив прохождение «фазы» через дроссель: если она есть на его входе, то должна быть и на выходе. При возникновении сомнений дроссель заменяют.
- Проверить исправность проводки светильника. Обратить внимание на контактные соединения дросселя, стартера и патронов ламп. Для удобства выполнения этой операции светильник лучше снять с потолка и положить на стол. Так будет удобнее и безопаснее.
Схема люминесцентного светильника с одной лампой
Схема люминесцентного светильника с двумя лампами
Если светильник безуспешно пытается зажечься, то причину ищут в очередности: стартер, лампа, дроссель. Выход их из строя в данной ситуации равновероятен.
При использовании электронной пуско-регулирующей аппаратуры (ЭПРА) определить ее исправность, используя мультиметр, не просто. В этом случае, поменяв лампы на новые, проверив исправность всех контактных соединений, заменяют ЭПРА. Ее можно отремонтировать, но для этого нужны знания в электронике: умение проверять электронные компоненты и работать паяльником, разбираться в схемах и принципах их работы.
Электронная пуско-регулирующая аппаратура
Если яркость свечения лампы снизилась, то ее необходимо заменить. При отрицательных температурах люминесцентные лампы зажигаются дольше или не зажигаются совсем.
Параметры заменяемых элементов
При приобретении новых стартеров и дросселей учитывайте номинальные данные заменяемых элементов.
Стартеры характеризуются двумя параметрами:
- Диапазоном мощностей ламп, для запуска которых они используются;
- Схемой, в которой они работают: с одной лампой или двумя.
Дроссели (ПРА) выпускаются:
- для ламп с цоколями Т5 или Т8:
- для запуска одной или двух ламп.
Для правильного выбора ЭПРА потребуются следующие данные:
- схема подключения (количество управляемых ламп);
- мощность ламп;
- ЭПРА бывают управляемые (с возможностью дистанционного управления световым потоком) и не управляемые.
Оцените качество статьи. Нам важно ваше мнение:
Устройство и схема включения люминесцентной лампы
Люминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).
Устройство и описание ЛЛ
Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.
Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать. Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого — создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер — лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины. В исходном состоянии электроды разомкнуты.
Принцип работы ЛЛ
Стартерная схема включения люминесцентных ламп работает следующим образом.
- На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
- При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
- Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
- Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.
Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.
Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.
Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.
Бездроссельное включение люминесцентных ламп: схемы
Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).
Как запускается ЛЛ с ЭПРА
Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.
Достоинства электронной схемы запуска:
- возможность пуска с любой временной задержкой;
- не нужны массивный электромагнитный дроссель и стартер;
- отсутствие гудения и моргания ламп;
- высокая светоотдача;
- легкость и компактность устройства;
- больший срок эксплуатации.
Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.
Система ЭПРА преобразует сетевое переменное напряжение 220 В в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения люминесцентной лампы может обеспечивать холодный запуск или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.
Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.
Выпрямление напряжения осуществляется диодным мостом, после чего оно сглаживается параллельно подключенным конденсатором С1. После подключения к сети сразу заряжается конденсатор С4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR1 и транзисторах Т1 и Т2. При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С2. С3. L1. подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.
ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.
Преимущества современных ЭПРА следующие:
- плавное включение;
- экономичность работы;
- сохранение электродов;
- исключение мерцания;
- работоспособность при низкой температуре;
- компактность;
- долговечность.
Недостатками являются более высокая стоимость и сложная схема зажигания.
Применение умножителей напряжения
Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.
После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С1. С2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С3. С4 устанавливают слюдяные на 1000 В.
ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.
Бесстартерная схема включения люминесцентных ламп
Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.
Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.
Как включить сгоревшую лампу?
Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА. Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.
Заключение
Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.
15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.
Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.
20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.
Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.
Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.
13 признаков, что у вас самый лучший муж Мужья – это воистину великие люди. Как жаль, что хорошие супруги не растут на деревьях. Если ваша вторая половинка делает эти 13 вещей, то вы можете с.
Достоинства и недостатки люминесцентной лампы
Люминесцентная лампа (ртутная лампа низкого давления, далее по тексту – ЛЛ) является газоразрядным источником света. Конструктивно она представляет собой стеклянную трубку с нанесенным на внутреннюю поверхность слоем люминофора. В торцах трубки установлены спиральные электроды. Внутри лампы находятся разреженные пары ртути и инертный газ. Под действием электрического напряжения (поля), приложенного к электродам, в лампе возникает газовый разряд. При этом проходящий через пары ртути ток вызывает ультрафиолетовое излучение.
Принцип люминесцентной лампы.
Ультрафиолетовое излучение, воздействуя на люминофор, заставляет его светиться, т.е. люминофор преобразует ультрафиолетовое излучение газового разряда в видимый свет. Стекло, из которого выполнена ЛЛ, препятствует выходу ультрафиолетовогоизлучения из лампы, тем самым предохраняя наши глаза от вредного для них излучения.
Исключением являются бактерицидные лампы, при их изготовлении применяется увиолевое или кварцевое стекло, пропускающее ультрафиолет. Широкое распространение на сегодня получают ЛЛ с амальгамами In. Cd и других элементов. Более низкое давление паров ртути над амальгамой дает возможность расширить температурный диапазон оптимальных световых отдач до 60 0 C вместо 18-25 0 C для чистой ртути.
При повышении температуры окружающей среды сверх допустимой нормы (25 о C для чистой ртути и 60 о C для амальгам) возрастает температура стенок и давление паров ртути, а световой поток снижается.
Устройство компактной люминесцентной лампы.
Еще более заметное уменьшение светового потока наблюдается при понижении температуры, а значит, и давление паров ртути. При этом резко ухудшается и зажигание ламп, что делает затрудненным их использование при температурах ниже -10 о C. без утепляющих приспособлений. В связи с этим представляют интерес безртутные ЛЛ, с разрядом низкого давления в инертных газах.
В этом случае люминофор возбуждается излучением с длиной волны от 58.4 до 147 нм. Поскольку давление газа в безртутных ЛЛ практически не зависит от окружающей температуры, неизменными остаются и их световые характеристики. На сегодняшний день проблема работы ЛЛ при низких температурах решена использованием ЛЛ нового поколения, так называемых ламп Т5 (с диаметром трубки 16 мм), компактных люминесцентных ламп и применением для питания ЛЛ высокочастотных электронных пускорегулирующих аппаратов (ПРА).
Световая отдача ЛЛ повышается при увеличении размеров (длины) за счет снижения доли анодно-катодных потерь в общем световом потоке. Поэтому рациональнее использовать одну лампу на 36 Вт, чем две по18 Вт. Срок службы ЛЛ ограничен дезактивацией и распылением (истощением) катодов. Отрицательно сказываются на срок службы также колебания напряжения питающей сети и частые включения и выключения ламп. При использовании ЭПРА эти факторы сведены к минимуму. Широкое использование ЛЛ связано с тем, что они имеют ряд значительных преимуществ перед классическими лампами накаливания :
- Высокая эффективность: КПД — 20-25% (у ламп накаливания около 7% ) и светоотдача в 10 раз больше .
- Длительный срок службы – 15000-20000 ч. (у ламп накаливания — 1000 ч. сильно зависит от напряжения) питания.
Имеют ЛЛ и некоторые недостатки :
- Как правило, все разрядные лампы для нормальной работы требуют включения в сеть совместно с балластом. Балласт, он же пускорегулирующий аппарат (ПРА), — электротехническое устройство, обеспечивающее режимы зажигания и нормальной работы ЛЛ.
- Зависимость устойчивой работы и зажигания лампы от температуры окружающей среды (допустимый диапазон 55 о C, оптимальной считается 20 о C ). Хотя этот диапазон постоянно расширяется с появлением ламп нового поколения и использованием электронных балластов (ЭПРА).
Остановимся подробнее на достоинствах и недостатках ЛЛ. Известно, что оптическое излучение (ультрафиолетовое, видимое, инфракрасное ) оказывает на человека (его эндокринную, вегетативную, нервную системы и весь организм в целом ) значительное физиологическое и психологическое воздействие, в основном благотворное.
Схема энергосберегающей лампы.
Дневной свет — самый полезный. Он влияет на многие жизненные процессы, обмен веществ в организме, физическое развитие и здоровье. Но активная деятельность человека продолжается и тогда, когда солнце скрывается за горизонты. На смену дневному свету приходит искусственное освещение. Долгие годы для искусственного освещения жилья использовались ( и используются ) только лампы накаливания – теплый источник света, спектр которого отличается от дневного преобладанием желтого и красного излучения и полным отсутствием ультрафиолета.
Кроме того, лампы накаливания, как уже упоминалось, неэффективны, их коэффициет полезного действия — 6-8%, а срок службы очень мал – не более 1000 ч. Высокий технический уровень освещения с этими лампами невозможен.
Типичные люминесцентные лампы-трубки.
Вот почему вполне закономерным оказалось появление ЛЛ – разрядного источника света, имеющего 5-10 раз большую световую отдачу, чем лампы накаливания, и в 8-15 раз больший срок службы. Преодолев различные технические трудности, ученые и инженеры создали специальные ЛЛ для жилья – компактные, практически полностью копирующие привычный внешний вид и размеры ламп накаливания и сочетающие при этом ее достоинства (комфортную цветопередачу, простоту обслуживания) с экономичностью стандартных ЛЛ.
В силу своих физических особенностей ЛЛ имеют еще одно очень важное преимущество перед лампами накаливания: возможность создавать свет различного спектрального состава – теплый, естественный, белый, дневной, что может существенно обогатить цветовую палитру домашней обстановки. Не случайно существуют специальные рекомендации по выбору типа ЛЛ (цветности света) для различных областей применения. Наличие контролируемого ультрафиолета в специальных осветительно-облучательных ЛЛ позволяет решить проблему профилактики «светового голодания» для городских жителей, проводящих до 80% времени в закрытых помещениях.
Так, лампы, выпускаемые фирмой OSRAM ЛЛ типа BIOLUX, спектр излучения которых приближен к солнечному и насыщен строго дозированным ближним ультрафиолетом, успешно используются одновременно и для освещения, и для облучения жилых, административных, школьных помещений, особенно при недостаточности естественного света.
Схема включения люминесцентной лампы.
Выпускаются также специальные агарные ЛЛ типа CLEO (PHILIPS), предназначенные для принятия «солнечных» ванн в помещении и для других косметических целей. При использовании этих ламп следует помнить, что для обеспечения безопасности необходимо строго соблюдать инструкции изготовителя облучательного оборудования. А теперь остановимся на недостатках люминесцентного освещения, к которым многие причисляют его пресловутую «вредность для здоровья».
Природа газового разряда такова, что, как уже было сказано выше, любые ЛЛ имеют в спектре небольшую долю ближнего ультрафиолета. Известно, что при передозировке даже естественного солнечного света могут возникнуть неприятные явления, в часности избыточное ультрафиолетовое облучение может привести к заболеваниям кожи, повреждению глаз. Однако, сравнив воздействие на человека в течение жизни естественного солнечного и искусственного люминесцентного излучения, становится понятно, насколько необоснованно предположение о вреде излучения ЛЛ.
Было доказано, что работа в течение года (240 рабочих дней) при искусственном освещении ЛЛ холодно-белого света с очень высоким уровнем освещенности в 1000 лк (это в 5 раз превышает оптимальный уровень освещенности в жилье) соответствует пребыванию на открытом воздухе в г. Давос (Швейцария) в течении 12 дней по 1 часу в день (в полдень). Следует заметить, что реальные условия в жилых помещениях бывают в десятки раз более щадящими, чем в приведенном примере.
Следовательно, о вреде обычного люминесцентного освещения говорить не приходится. К аналогичным выводам пришли медики, гигиенисты и светотехники, принявшие участие в проводившейся в Мюнхене развернутой научной дискуссии на тему «Влияние освещения ЛЛ на здоровье человека». Все участники дискуссии были единодушны: строгое соблюдение правил грамотного устройства освещения, которые включают ограничение прямой и отраженной блескости, ограничение пульсации светового потока, обеспечение благоприятного распределения яркости и правильной светопередачи, полностью устранит существующие жалобы на люминесцентное освещение.
Изменение тока люминесцентной лампы от напряжения сети.
В приведенном выше перечне важное место занимает вопрос ограничения пульсации светового потока. Дело в том, что традиционные линейные трубчатые ЛЛ, подключенные к сети с помощью электромагнитного пускорегулирующего аппарата (чаще всего применяемого в светильниках), создают свет непостоянный во времени, а «микропульсирующий», т .е. при имеющейся в сети частоте переменного тока 50 Гц пульсация светового потока лампы происходит 100 раз в секунду.
И хотя эта частота выше критической для глаза и, следовательно, мелькающие яркости освещаемых объектов глазом не улавливаются, пульсация освещения при длительном воздействии может отрицательно влиять на человека, вызывая повышенную утомляемость, снижение работоспособности, особенно при выполнении напряженных зрительных работ: чтение, работе за компьютером, рукоделии и т. д.
Вот почему появившиеся достаточно давно светильники с электромагнитным низкочастотным ПРА рекомендуется использовать в так называемых «нерабочих» зонах (подсобных помещениях, повалах, гаражах и т. д.). В светильниках с электронным высокочастотным ПРА указанная особенность работы ЛЛ полностью устранена, но даже такие светильники с линейными ЛЛ достаточно громоздки и для местного (рабочего) освещения не всегда удобны. Поэтому для традиционного освещения жилья люстрами, настенными, напольными, настольными светильниками целесообразно применять упомянутые выше компактные люминесцентные лампы.
Маркировка и параметры отечественных люминесцентных ламп.
И, наконец, последнее небольшое замечание, связанное с эксплуатацией светильников с ЛЛ. В лампу для ее работы вводится капля ртути – 30-40 мг. а компактных 2-3 мг, Если вас это пугает, вспомните, что в термометре, имеющемся в каждой семье, содержится 2 г этого жидкого металла. Разумеется, если лампа разобьется, поступить следует так же, как мы поступаем, когда разбиваем термометр, – тщательно собрать и удалить ртуть. ЛЛ в жилье – это не только более экономичный, чем лампа накаливания, источник света.
Грамотное освещение ЛЛ имеет множество преимуществ перед традиционным: экономичность, обилие и красочность света, равномерность распределения светового потока, особенно в случаях высвечивания протяженных объектов линейными лампами, меньшая яркость ламп и значительно меньшее выделение тепла.
На сегодняшний день наиболее качественную продукцию и широкий ассортимент на нашем рынке представляют мировые светотехнические брэнды:
- Германская фирма OSRAM.
- Голландская PHILIPS и ряд других, которые предлагают широчайший выбор высококачественных ЛЛ на любой вкус и цвет.
Источники: http://electric-tolk.ru/remont-lyuminescentnogo-svetilnika-instrukciya/, http://fb.ru/article/233664/ustroystvo-i-shema-vklyucheniya-lyuminestsentnoy-lampyi, http://fazaa.ru/osveshhenie/ustrojstvo-i-princip-raboty-lyuminescentnoj-lampy.html