Схема реверсивного двигателя

Электротехническая промышленность — ведущая отрасль народного хозяйства. Продукция электротехнической промышленности используется почти во всех промышленных установках, поэтому качество электротехнических изделий во многом определяет технический уровень продукции других отраслей.

Асинхронные двигатели являются основными преобразователями электрической энергии в механическую и составляют основу электропривода большинства механизмов, используемых во всех отраслях народного хозяйства.

Принцип действия асинхронного двигателя основан на создании вращающегося магнитного поля при питании обмотки статора трехфазным током. Если скорость ротора меньше скорости вращения магнитного поля, то силовые линии вращающегося магнитного поля будут пересекать проводники обмотки ротора и индуктировать в них ЭДС. Поскольку обмотка ротора замкнута, то в проводниках будут протекать токи. На проводники с током, находящиеся в магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарное усилие, приложенное ко всем проводникам ротора, образует электромагнитный момент, который увлекает ротор за вращающимся магнитным полем. Но этот момент возникает только тогда, когда скорость ротора не равна скорости вращения поля, т. е. синхронной скорости. Поэтому машина называется асинхронной, что означает «несинхронная».

Управление асинхронными двигателями

Принцип работы схемы управления асинхронным двигателем с к.з. ротором с одного места включения

Схему можно условно разделить на силовую — это то что находится слева, и на схему управления — это то что находиться справа. Для начала на всю электрическую цепь нужно подать напряжение путём включения автомата QF. И напряжение подаются на неподвижные контакты пускателя и на цепь управления. Далее нажимаем кнопку пуска SB2, при этом действии напряжение подается на катушку пускателя и он втягивается и подаётся также напряжение на обмотки статора и электродвигатель начинает вращаться. Одновременно с силовыми контактами на пускателе замыкаются и блок-контакты КМ через которые подаётся напряжение на катушку пускателя и кнопку SB2 можно отпустить. На этом запуска уже окончен.

Схема реверсивного двигателя

Рис.1 Схема управления асинхронным двигателем с к.з. ротором

Для того чтобы прекратить работу электродвигателя нужно нажать на кнопку SB1. Этим действием мы разрываем цепь управления и прекращается подача напряжения на катушку пускателя, и силовые контакты размыкаются и как следствие пропадает напряжение на обмотках статора, и он останавливается.

Принцип работы схемы реверсивного управления асинхронным двигателем с к.з. ротором с выдержкой времени

Реверсирование двигателя выполняется двумя контакторами и трёхкнопочной станцией, следующим образом. При срабатывании контактора КМ1 к обмоткам двигателя подаётся напряжение сети с прямым порядком чередования фаз (А-В-С). Если сработает контактор КМ2, то порядок чередование фаз обратный(С-В-А).

Схема реверсивного двигателя

Рис.2 Схема реверсивного управления асинхронным двигателем с к.з. ротором с выдержкой времени

Дистанционный пуск и остановку выполняют реверсивным электромагнитным пускателем (КМ), снабженным электротепловым реле (КК) для защиты его от перегрузок. Управление электродвигателем осуществляется кнопками«ВПЕРЁД», «НАЗАД»,«СТОП».

Пуск электродвигателя вперёд осуществляется следующим образом. При нажатии SBC1.1(кнопка «ВПЕРЁД»с замыкающим контактом) образуется замкнутая электрическая цепь: фаза А-размыкающий контакт SBT(кнопка «СТОП») размыкающий контакт SBC2.2(кнопка«НАЗАД»), замыкающий контакт SBC1.1, катушка электромагнитного пускателя КМ1, размыкающий контакт электротеплового реле КК-фаза В.

В электромагните КМ1 создаётся магнитное поле. Якорь, притягиваясь к сердечнику, увлекает траверсу, на которой закреплены подвижные главные и блокировочные контакты. Силовые контакты КМ1 замыкают цепь главного тока, обеспечивая запуск двигателя вперёд, а блокировочный замыкающий контакт КМ 1.1 шунтирует кнопку «ВПЕРЁД», так как она с пружинным самовозвратом и замкнута лишь на нажатии.

Пуск электродвигателя назад осуществляется следующим образом. При нажатии SBC2.1 (кнопка «НАЗАД» с замыкающим контактом) образуется замкнутая электрическая цепь: фаза А-размыкающий контакт SBT (кнопка «СТОП» ), размыкающий контакт SBC 1.2(кнопка «ВПЕРЁД»), замыкающий контакт SBC 2.1 размыкающий блокировочный контакт магнитного пускателя KM 2.2, катушка реле времени KT, нулевой провод сети N, при этом замкнётся контакт реле времени KT 1.1 через определённый промежуток времени, который выставляется на шкале реле, при помощи указателя неподвижных контактов замкнётся подвижный контакт с самовозвратом КТ1.2, катушка электромагнитного пускателя КМ2, размыкающий контакт электротеплового реле КК-фаза В. Т.о. сработает контактор КМ2, в силовой цепи замкнутся главные контакты КМ2.1 шунтирует кнопку «НАЗАД»(контакт SBC2.1 и контакт с выдержкой времени КТ1.2).

Для остановки электродвигателя следует нажать кнопку SBTс размыкающим контактом («СТОП»). При этом обесточивается катушка КМ, главные контакты электромагнитного пускателя разомкнутся и отключается электродвигатель.

Защита электродвигателя от перегрузок осуществляется тепловым реле КК, которое работает нижеописанным способом. При превышении заданного значения электрического тока в цепи питания электродвигателя сработает тепловое реле КК и своим размыкающим контактом разомкнёт цепь питания катушки электромагнитного пускателя, что в свою очередь приведёт к размыканию его главных контактов и электродвигатель отключается.

асинхронный двигатель ротор реверсный

Схема включения асинхронного двигателя с фазным ротором

Схема реверсивного двигателя

Рис. 3. Схема пуска асинхронного двигателя с фазным ротором

Используя схему асинхронного двигателя (рис. ) рассмотрим запуск в две ступени который проводится с использованием релейно-контакторной аппаратуры. Одновременно напряжение подается как на силовые цепи, так и на управляющие — замыкается выключатель QF. При подаче напряжения реле времени (обозначены КТ1 и КТ2) в цепи управления срабатывают, размыкая свои контакты. После нажатия кнопки запуска (SB1) срабатывает контактор КМ3 и запускается двигатель с резисторами, которые введены в цепь ротора — в этот момент на контакторах КМ1 и КМ2 питания нет. При подключении контактора КМЗ, из-за потери питания, в цепи контактора КМ1 реле КТ1 замыкает контакт через интервал времени, заданный задержкой времени в реле КТ1. По истечению времени (двигатель разгоняется, ток ротора начинает падать) происходит включение контактора КМ1 — происходит шунтирование первой пусковой ступени резисторов. Ток снова возрастает. но по мере разгона его значение начинает уменьшаться. Одновременно с этим в цепи происходит размыкание реле КТ2, оно теряет питание и с выставленной выдержкой происходит замыкание контакта в цепи контактора КМ2. Происходит шунтирование второй ступени резисторов, включенных в цепь ротора. Двигатель работает в штатном режиме.

Три наиболее популярные схемы управления асинхронным двигателем

Все электрические принципиальные схемы станков, установок и машин содержат определенный набор типовых блоков и узлов, которые комбинируются между собой определенным образом. В релейно-контакторных схемах главными элементами управления двигателями являются электромагнитные пускатели и реле.

Наиболее часто в качестве привода в станках и установках применяются трехфазные асинхронные двигатели с короткозамкнутым ротором. Эти двигатели просты в устройстве, обслуживании и ремонте. Они удовлетворяют большинству требований к электроприводу станков. Главными недостатками асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи (в 5-7 раз больше номинального) и невозможность простыми методами плавно изменять скорость вращения двигателей.

С появлением и активным внедрением в схемы электроустановок преобразователей частоты такие двигатели начали активно вытеснять другие типы двигателей (асинхронные с фазным ротором и двигатели постоянного тока) из электроприводов, где требовалось ограничивать пусковые токи и плавно регулировать скорость вращения в процессе работы.

Одной из преимуществ использования асинхронных двигателей с короткозамкнутым ротором является простота их включения в сеть. Достаточно подать на статор двигателя трехфазное напряжение и двигатель сразу запускается. В самом простом варианте для включения можно использовать трехфазный рубильник или пакетный выключатель. Но эти аппараты при своей простоте и надежности являются аппаратами ручного управления.

В схемах же станков и установок часто должна быть предусмотрена работа того или иного двигателя в автоматическом цикле, обеспечиваться очередность включения нескольких двигателей, автоматическое изменение направления вращения ротора двигателя (реверс) и т.д.

Обеспечить все эти функции с аппаратами ручного управления невозможно, хотя в ряде старых металлорежущих станков тот же реверс и переключение числа пар полюсов для изменения скорости вращения ротора двигателя очень часто выполняется с помощью пакетных переключателей. Рубильники и пакетные выключатели в схемах часто используются как вводные устройства, подающие напряжение на схему станка. Все же операции управления двигателями выполняются электромагнитными пускателями.

Схема реверсивного двигателя

Включение двигателя через электромагнитный пускатель обеспечивает кроме всех удобств при управлении еще и нулевую защиту. Что это такое будет рассказано ниже.

Наиболее часто в станках, установках и машинах применяются три электрические схемы:

схема управления нереверсивным двигателем с использованием одного электромагнитного пускателя и двух кнопок «пуск» и «стоп»,

схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок.

схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок, в двух из которых используются спаренные контакты.

Разберем принцип работы всех этих схем.

1. Схема управления двигателем с помощью магнитного пускателя

Схема показана на рисунке.

Схема реверсивного двигателя

При нажатии на кнопку SB2 «Пуск» на катушка пускателя попадает под напряжение 220 В, т.к. она оказывается включенной между фазой С и нулем ( N). Подвижная часть пускателя притягивается к неподвижной, замыкая при этом свои контакты. Силовые контакты пускателя подают напряжение на двигатель, а блокировочный замыкается параллельно кнопке «Пуск». Благодаря этому при отпускании кнопки катушка пускателя не теряет питание, т.к. ток в этом случае идет через блокировочный контакт.

Если бы блокировочный контакт не был бы подключен параллельно кнопки (по какой-либо причине отсутствовал), то при отпускании кнопки «Пуск» катушка теряет питание и силовые контакты пускателя размыкаются в цепи двигателя, после чего он отключается. Такой режим работы называют «толчковым». Применяется он в некоторых установках, например в схемах кран-балок.

Остановка работающего двигателя после запуска в схеме с блокировочным контактом выполняется с помощью кнопки SB1 «Стоп». При этом, кнопка создает разрыв в цепи, магнитный пускатель теряет питание и своими силовыми контактами отключает двигатель от питающей сети.

В случае исчезновения напряжения по какой-либо причине магнитный пускатель также отключается, т.к. это равносильно нажатию на кнопку «Стоп» и созданию разрыва цепи. Двигатель останавливается и повторный запуск его при наличии напряжения возможен только при нажатии на кнопку SB2 «Пуск». Таким образом, магнитный пускатель обеспечивает т.н. «нулевую защиту». Если бы он в цепи отсутствовал и двигатель управлялся рубильником или пакетным выключателем, то при возврате напряжения двигатель запускался бы автоматически, что несет серьезную опасность для обслуживающего персонала. Подробнее смотрите здесь — защита минимального напряжения.

Анимация процессов, протекающих в схеме показана ниже.

2. Схема управления реверсивным двигателем с помощью двух магнитных пускателей

Схема работает аналогично предыдущей. Изменение направления вращения (реверс) ротор двигателя меняет при изменении порядка чередования фаз на его статоре. При включении пускателя КМ1 на двигатель приходят фазы — A. B. С, а при включении пускателя KM2 — порядок фаз меняется на С, B. A.

Схема показана на рис. 2.

Схема реверсивного двигателя

Включение двигателя на вращение в одну сторону осуществляется кнопкой SB2 и электромагнитным пускателем KM1. При необходимости смены направления вращения необходимо нажать на кнопку SB1 «Стоп», двигатель остановится и после этого при нажатии на кнопку SB 3 двигатель начинает вращаться в другую сторону. В этой схеме для смены направления вращения ротора необходимо промежуточное нажатие на кнопку «Стоп».

Кроме этого, в схеме обязательно использование в цепях каждого из пускателей нормально-закрытых (размыкающих) контактов для обеспечения защиты от одновременного нажатия двух кнопок «Пуск» SB2 — SB 3, что приведет к короткому замыканию в цепях питания двигателя. Дополнительные контакты в цепях пускателей не дают пускателям включится одновременно, т.к. какой-либо из пускателей при нажатии на обе кнопки «Пуск» включиться на секунду раньше и разомкнет свой контакт в цепи другого пускателя.

Необходимость в создании такой блокировки требует использования пускателей с большим количеством контактов или пускателей с контактными приставками, что удорожает и усложняет электрическую схему.

Анимация процессов, протекающих в схеме с двумя пускателями показана ниже.

3. Схема управления реверсивным двигателем с помощью двух магнитных пускателей и трех кнопок (две из которых имеют контакты с механической связью)

Схема показана на рисунке.

Схема реверсивного двигателя

Отличие этой схемы от предыдущей в том, что в цепи каждого пускателя кроме общей кнопки SB1 «Стоп» включены по 2 контакта кнопок SB2 и SB 3, причем в цепи КМ1 кнопка SB2 имеет нормально-открытый контакт (замыкающий), а SB 3 — нормально-закрытый (размыкающий) контакт, в цепи КМ3 — кнопка SB2 имеет нормально-закрытый контакт (размыкающий), а SB 3 — нормально-открытый. При нажатии каждой из кнопок цепь одного из пускателей замыкается, а цепь другого одновременно при этом размыкается.

Такое использование кнопок позволяет отказаться от использования дополнительных контактов для защиты от одновременного включения двух пускателей (такой режим при этой схеме невозможен) и дает возможность выполнять реверс без промежуточного нажатия на кнопку «Стоп», что очень удобно. Кнопка «Стоп» нужна для окончательной остановки двигателя.

Приведенные в статье схемы являются упрощенными. В них отсутствуют аппараты защиты (автоматические выключатели, тепловые реле), элементы сигнализации. Такие схемы также часто дополняются различными контактами реле, выключателей, переключателей и датчиков. Также возможно питание катушки электромагнитного пускателя напряжение 380 В. В этом случае он подключается от двух любых фаз, например, от А и B. Возможно использование понижающего трансформатора для понижения напряжения в схеме управления. В этом случае используются электромагнитные пускатели с катушками на напряжение 110, 48, 36 или 24 В.

Статьи и схемы

Полезное для электрика

Схема реверсивного пуска двигателя

Схема реверсивного двигателя

В современной промышленности и в сельскохозяйственной сфере самое широкое применение нашли трехфазные асинхронные электрические двигатели. Они используются в различных станках, в качестве электропривода, в транспортерах, подъемных механизмах, насосах и вентиляторах. Такие же двигатели, имеющие небольшую мощность, часто применяются для автоматических устройств.

Особенности асинхронных двигателей

Многие несомненные достоинства сделали трехфазные асинхронные двигатели чрезвычайно популярными. Их отличает высокая надежность, они очень просты в Схема реверсивного двигателя эксплуатации и техническом обслуживании, могут работать в прямом подключении к сетям переменного тока.

Очень часто во время рабочих процессов возникает такая ситуация, когда необходимо обязательно изменить направление вращения вала на противоположное. Именно для таких случаев используется схема реверсивного пуска двигателя, совместно с которой применяются дополнительные электрические приборы. Без этих дополнительных устройств, невозможна нормальная реверсивная работа электродвигателя. Для этой схемы используются контакторы в количестве двух единиц, вводное автоматическое устройство, имеющее необходимые параметры, одно тепловое реле и три кнопки управления, входящие в кнопочный пост .

Реверсивный пуск двигателя

Для того, чтобы изменить направление вращения вала на противоположное, в обязательном порядке должно быть изменено расположение фаз напряжения, которое подается при питании асинхронного двигателя. Именно для этого и применяется схема реверсивного пуска двигателя, позволяющая полностью выполнить эту функцию.

Схема реверсивного двигателя

Кроме того, необходимо осуществлять постоянный контроль над значением напряжения, подводимого к двигателю, а также за напряжением, поступающим к катушкам контакторов. Именно контакторы непосредственно участвуют в организации реверсивного движения вала. При срабатывании первого контактора, фазы будут располагаться совершенно иначе, нежели при включении второго контактора.

Управление реверсивным пуском

Управление катушками обоих контакторов осуществляется тремя кнопками с наименованиями «стоп», «вперед» и «назад». Эти кнопки позволяют связать расположение фаз с питанием контакторных катушек. В зависимости от очередности включения, контакторы производят замыкание электрической цепи таким образом, что вращение вала будет происходить в ту или иную сторону. Кнопка «назад» может не удерживаться, поскольку катушка сама принимает нужное положение благодаря функции самоподхвата.

На всех трех кнопках имеется блокировка, которая исключает возможность их одновременного нажатия. В такой ситуации велика вероятность выхода из строя электрической части оборудования. Поэтому, для блокировки кнопок используется специальный блок-контакт, расположенный внутри соответствующего контактора.

Источники: http://studbooks.net/1420420/tovarovedenie/upravlenie_asinhronnymi_dvigatelyami, http://electricalschool.info/main/electroshemy/1511-tri-naibolee-populjarnye-skhemy.html, http://electric-220.ru/news/skhema_reversivnogo_puska_dvigatelja/2013-11-25-460

Рейтинг
( Пока оценок нет )
Всё об электрике в доме
Добавить комментарий