Электродвигатель с фазным ротором принцип работы

схема асинхронного двигателя с фазным ротором

Большие пусковые токи двигателей создают скачки напряжения в электросети. Возможность избежать этого переключением асинхронного двигателя со звезды на треугольник я описывал. Есть еще способ снижения пускового тока — асинхронный двигатель с фазным ротором. Преимущества такого способа весьма ощутимы:

  1. пусковой момент почти не снижается;
  2. довольно плавная регулировка скорости вращения ротора;
  3. возможность торможения противотоком (изменение вращения ротора в противоположную сторону — реверс) без последствий для статора;
  4. возможность динамического торможения (об этом читайте ниже).

Из минусов я бы назвал громоздкость электрооборудования и повышенная сложность обслуживания. Схема асинхронного двигателя с фазным ротором значительно сложнее схемы асинхронного двигателя с короткозамкнутым ротором.
Асинхронный двигатель с фазным ротором широко применяется в грузоподъемной технике (мостовые, козловые, башенные краны).
Обмотки фазного ротора соединены в звезду, и через токосъемные кольца с графитовыми или медно-графитовыми щетками к обмоткам подключаются сопротивления номиналом ниже 1 Ом (десятые и сотые доли). Так как в фазном роторе наводится ток, превосходящий статорный, сопротивления очень большого сечения. Сделанные из нихрома, они собираются секциями в ящике, размером больше самого двигателя. Подключается от 3 до 5 ступеней разгона двигателя.
При пуске работает вся батарея сопротивлений. Постепенно закорачивая части сопротивлений силовыми контактами пускателей, командоконтроллеров или контакторов, повышают скорость вращения ротора. В схемах асинхронного двигателя с фазным ротором я преднамеренно исключил многие элементы управления, чтобы не отвлекали от описания работы фазного ротора и сопротивлений.
Электродвигатель с фазным ротором принцип работы
На легких мостовых кранах сопротивления переключаются непосредственно силовыми контактами командоконтроллера (Рис.1). Сначала включаются в работу все сопротивления, двигатель работает на малой скорости, затем закорачивается верхняя часть сопротивлений, и поэтапно выводится из работы вся батарея, обеспечивая максимальную скорость вращения ротора. Крановщик может включить самую высокую скорость, мгновенно проходя все ступени разгона.
На башенном кране такая вольность чревата. Плавность разгона там регулирует реле времени .
Помню, на башенном кране сгорела катушка реле, а начальство требует срочно разгрузить машины на стройке. Пришлось идти на преступление — закорачивать контакты реле времени. Жуткое зрелище, скажу вам, когда под тяжелым грузом дергало и раскачивало башню крана!
Электродвигатель с фазным ротором принцип работы
Разберем примерную схему асинхронного двигателя с фазным ротором (Рис.2). Не обращая внимания на статорные цепи, вкратце разберем работу фазного ротора.
В нейтральном положении контроллера включено реле времени РУ1, остальные катушки обесточены.
На первой ступени пуска контактом контроллера включается контактор подъема или спуска (КМП или КМС), ротор вращается на минимальных оборотах при полном сопротивлении. Замыкается цепь реле РУ2. С задержкой времени включается нормально разомкнутый контакт РУ2, обеспечивая цепь включения контактора КУ1.
На второй ступени пуска следующим контактом контроллера включается контактор КУ1, контакты которого выводят часть сопротивлений из работы. Скорость вращения увеличивается. В это время вспомогательный контакт включенного контактора КУ1 разрывает цепь реле времени РУ1. Нормально замкнутый контакт реле РУ1 возвращается с задержкой в исходное положение — цепь катушки КУ2 готова к работе.
Третья ступень контроллера включает контактор КУ2, и выходит из работы еще одна часть сопротивлений. Вспомогательный контакт КУ2 отключает катушку реле времени РУ2, нормально разомкнутый контакт РУ2 без помощи контроллера с задержкой включает катушку контактора КУ3. Все сопротивления закорочены, двигатель работает на максимальных оборотах.
Режим динамического торможения асинхронного двигателя основан на совместной работе фазного ротора, блока сопротивлений и трехфазного выпрямителя. Разберем саму суть динамического торможения с самовозбуждением. Если разбираться основательно во всех схемах режима, понадобится целая заумная статья, что для начинающего электрика будет сложновато.
Торможение асинхронного двигателя с фазным ротором можно осуществить подачей на статор постоянного тока. Если постоянный ток получить через выпрямитель из питающей линии и подать на статор, получится динамическое торможение с подпиткой. Режим с самовозбуждением не использует внешнюю подпитку.
Известно, что при снятии напряжения со статора в «железе» остается остаточное магнитное поле. Это явление и используется в нашей простенькой схеме (Рис.3).
Электродвигатель с фазным ротором принцип работы
Ротор, вращаясь в остаточном магнитном поле, вырабатывает трехфазный переменный ток, который выпрямляется трехфазным диодным мостом. Полученное таким образом постоянное напряжение через контакты контактора КД подается на обмотки статора.
Динамическое торможение эффективно применяется на башенных кранах в режиме опускания груза. Двигатель в этом режиме расторможен, и груз раскручивает лебедку. Ротор вырабатывает переменный ток, который, выпрямляясь диодным мостом, притормаживает двигатель. Если груз ускоряется, ток увеличивается, создавая большее торможение. Груз приостанавливается, ток уменьшается, торможение ослабевает. Получается что-то вроде отрицательной обратной связи (знаете электронику?). Плавность посадки груза самого высокого уровня. Единственное, что плохо, — груз должен быть не легким. Легкий груз может не разогнать лебедку.

Добавить комментарий Отменить ответ

Асинхронные электродвигатели с фазным ротором

В настоящее время, на долю асинхронных двигателей приходится не менее 80% всех электродвигателей, выпускаемых промышленностью. К ним относятся и трехфазные асинхронные двигатели.

Трехфазные асинхронные электродвигатели широко используются в устройствах автоматики и телемеханики, бытовых и медицинских приборах, устройствах звукозаписи и т.п.

Достоинства асинхронных электродвигателей

Широкое распространение трехфазных асинхронных двигателей объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.

Устройство асинхронных электродвигателей с фазным ротором

Электродвигатель с фазным ротором принцип работыОсновными частями любого асинхронного двигателя является неподвижная часть – статор и вращающая часть, называемая ротором.

Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.

Фазы обмотки можно соединить по схеме »звезда» или «треугольник» в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют «звездой». Если же напряжение сети 220 В, то обмотки соединяют в «треугольник». В обоих случаях фазное напряжение двигателя равно 220 В.

Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные.

Электродвигатель с фазным ротором принцип работы

В асинхронных электродвигателях большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов.

Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).

Электродвигатель с фазным ротором принцип работы

Асинхронный двигатель с фазным ротором имеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.

Принцип работы асинхронных электродвигателей

Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле. угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. ω1=2πf/p

Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим малнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора ω2 не равна угловой скорости магнитного поля ω1, называемой синхронной. Отсюда и название двигателя асинхронный, т. е. несинхронный.

Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля ω1 и ротора ω2: s=(ω1-ω2)/ω1

Электродвигатель с фазным ротором принцип работы

Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: ω2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.

При вращении ротора со скоростью ω2>ω1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1÷0), генераторный (s=0÷-∞) режимы и режим противовключення (s=1÷+∞). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.

Статьи и схемы

Полезное для электрика

[ВИДЕО] Асинхронный двигатель: принцип работы, характеристики

Принцип работы любого асинхронного двигателя основан на физическом взаимодействии магнитного поля, возникающего в статоре, с током, который это же поле наводит в обмотке ротора. Электрическое напряжение прикладывается к обмотке статора, которая выполнена как три группы катушек. Под действием напряжения в обмотке возникает переменный трехфазный ток, который и наводит вращающееся магнитное поле. При пересечении замкнутой обмотки ротора, это поле, в соответствии с законом об электромагнитной индукции, создает в ней ток. Взаимодействие вращающегося магнитного поля (статор) и тока (ротор) создает вращающий электромагнитный момент, который и приводит ротор в движение. Благодаря совокупности моментов, создаваемых отдельными проводниками, возникает результирующий момент, электромагнитная пара сил, заставляющая вращаться ротор в направлении, в котором движется электромагнитное поле в статоре. Ротор и магнитное поле при этом вращаются с различными скоростями, т.е. асинхронно (отсюда и основное название двигателей). У асинхронных двигателей скорость, с которой будет вращаться ротор, всегда будет меньше скорости, с которой вращается магнитное поле в статоре.

С момента начала вращения ротор может выполнить механическую работу – с помощью подсоединенного вала приводить в движение технологическую машину (насос, вентилятор, транспортер и т.д.).

Принцип работы асинхронного двигателя показан на видео.

Асинхронный двигатель с фазным ротором необходим в приводах, которые сразу требуют большого пускового момента – лифты, краны, мельницы и т.д. В таких механизмах необходимее уже при запуске двигателя получить максимальный момент, но при этом ограничив значение пускового тока.

Основные элементы асинхронного двигателя – ротор и статор, разделяемые воздушным зазором. Активные части двигателя – магнитопровод и обмотки, остальные составляющие – конструктивные, призванные обеспечить необходимую жесткость, прочность, возможность вращения и его стабильность, охлаждение и т.д.

Cтатор – неподвижная часть, на внутренней стороне сердечника которого размещаются обмотки. Обмотка статора — это трехфазная (для общего случая — многофазная) обмотка, в которой проводники равномерно распределяются по окружности статора и уложены пофазно в пазах, соблюдая угловое расстояние равное 120 эл.град. Статорные фазы обмотки соединены стандартно – «звезда» или «треугольник» — и подключены к трехфазной сети электротока. В процессе вращения (изменения) магнитного потока в обмотках возбуждения, происходит перемагничивание магнитопровода статора, поэтому он изготовлен шихтованным (набирается из пластин) из особой электротехнической стали – таким способом удается минимизировать магнитные потери.

Электродвигатель с фазным ротором принцип работы

Рис. 1. Схема асинхронного двигателя

На асинхронный двигатель с фазным ротором установлен ротор, на котором размещают три, как и на статоре, фазные обмотки, соединяемые между собой по схеме «звезда» («треугольник» встречается очень редко). К медным кольцам (их количество равно количеству обмоток), которые закреплены на валу рота и полностью изолированы как сердечника ротора, так и между собой, присоединены концы фазных обмоток. Благодаря этому соединению асинхронный двигатель с фазным ротором имеет и другое название – двигатель с контактными кольцами.

Асинхронные двигатели с фазным ротором: особенности пуска

Асинхронные двигатели сегодня – это доля в 80% от всего количества разнообразных электродвигателей, выпускаемых мировой промышленностью. Все это – благодаря простоте конструкции, в эксплуатации и обслуживании, низкой себестоимости и высокой надежности. Но есть один существенный недостаток – из сети асинхронные двигатели потребляют реактивную составляющую мощности. Поэтому их предельная мощность напрямую зависит от мощности системы энергоснабжения. Кроме того, такой электропривод имеет значения пускового тока, которые в втрое больше рабочих. При малой мощности системы энергоснабжения, это может вызвать значительное падение напряжение в сети и отключение других приборов. Асинхронные двигатели с фазным ротором, благодаря введению в цепь ротора пусковых реостатов, могут запускаться с небольшим пусковым током.

Электродвигатель с фазным ротором принцип работы

Рис. 2. Асинхронные двигатели

Резисторы, стоящие в цепи ротора, помогают ограничить ток не только в течении запуска, но так же и при торможении, реверсе и при снижении скорости. По мере того, как двигатель набирает скорость – разгоняется, чтобы поддерживать необходимое ускорение, резисторы выводятся. При окончании разгона и выхода на паспортную частоту, все резисторы шунтируются, двигатель переходит на работу со своей естественной механической характеристикой.

Рассмотрим пример запуска асинхронного двигателя с фазным ротором.

Электродвигатель с фазным ротором принцип работы

Рис. 3. Схема запуска асинхронного двигателя с фазным ротором

Используя схему асинхронного двигателя (рис. ) рассмотрим запуск в две ступени который проводится с использованием релейно-контакторной аппаратуры. Одновременно напряжение подается как на силовые цепи, так и на управляющие – замыкается выключатель QF.

При подаче напряжения реле времени (обозначены КТ1 и КТ2) в цепи управления срабатывают, размыкая свои контакты. После нажатия кнопки запуска (SB1) срабатывает контактор КМ3 и запускается двигатель с резисторами, которые введены в цепь ротора – в этот момент на контакторах КМ1 и КМ2 питания нет. При подключении контактора КМЗ, из-за потери питания, в цепи контактора КМ1 реле КТ1 замыкает контакт через интервал времени, заданный задержкой времени в реле КТ1. По истечению времени (двигатель разгоняется, ток ротора начинает падать) происходит включение контактора КМ1 – происходит шунтирование первой пусковой ступени резисторов. Ток снова возрастает. но по мере разгона его значение начинает уменьшаться. Одновременно с этим в цепи происходит размыкание реле КТ2, оно теряет питание и с выставленной выдержкой происходит замыкание контакта в цепи контактора КМ2. Происходит шунтирование второй ступени резисторов, включенных в цепь ротора. Двигатель работает в штатном режиме.

Благодаря ограничению пускового тока, асинхронный двигатель с фазовым ротором можно устанавливать в слабых сетях.

Порядок подключения асинхронного двигателя приведен на видео.

Асинхронные двигатели с фазным ротором:плюсы и минусы

Как уже указывалось выше, если сравнивать его с двигателем с короткозамкнутым ротором, имеет два основных преимущества:

  • возможность запуска двигателя с уже подключенной к валу значительной нагрузкой – двигатель с самого начала создает большой вращающий момент
  • ограничение по току включения позволяет устанавливать асинхронные двигатели с фазовым ротором в маломощных сетях.

Кроме того, следует отметить и другие достоинства:

  • возможность работы с большой перегрузкой
  • малые колебания скорости вращения – при разных нагрузках скорость вращения остается приблизительно одинаковой
  • возможность установки автоматики – пусковых приспособлений

Отметим и недостатки:

  • введение резисторов в цепь ротора усложняет и удорожает двигатель
  • большие габариты
  • меньший, чем у короткозамкнутых двигателей, показатель КПД и cos φ
  • при недогрузках значение cos φ имеет минимальные значения

На практике асинхронные двигатели с фазным ротором оптимально подходят для случаев, когда нет необходимости в широкой и плавной регулировке скорости и требуется очень большая (особенно на первоначальном этапе) мощность двигателя.

Для правильного подключения асинхронного двигателя важно правильно определить начала и концы фазных обмоток. Как это сделать – подробно рассмотрено на видео.

Источники: http://electriku.ru/rotor, http://electricalschool.info/main/osnovy/259-asinkhronnye-jelektrodvigateli-s-faznym.html, http://44kw.com/blogs/school/2296-video-asinkhronnyi-dvigatel-printsip-raboty-kharakteristiki

Рейтинг
( Пока оценок нет )
Всё об электрике в доме
Добавить комментарий