- Коэффициент трансформации трансформатора
- Определение и формула коэффициента трансформации трансформатора
- Разные виды трансформаторов и их коэффициенты трансформации
- Примеры решения задач
- Коэффициент трансформации трансформатора
- Что такое коэффициент трансформации
- Основной параметр трансформатора
- Коэффициент трансформации электросчетчика
- Как определить коэффициент трансформации
Коэффициент трансформации трансформатора
Определение и формула коэффициента трансформации трансформатора
На практике при использовании энергии электрического тока часто появляется необходимость изменять напряжение, которое подается от генератора. Переменное напряжение можно масштабировать (повышать или понижать) почти без потерь энергии. Устройства при помощи которых производят преобразование напряжения (силы тока, сопротивления и т.д.) называют трансформаторами. Трансформаторы не преобразовывают виды энергии, а изменяют величину заданного параметра цепи, уменьшая его или увеличивая, поэтому, когда в данном случае говорят о преобразовании, то имеют в виду масштабирование.
Коэффициентом трансформации называют физическую величину, которая показывает относительное изменение параметра электрической сети, на который направлено преобразование.
Или, проще говоря, коэффициент трансформации показывает, во сколько раз трансформатор изменяет напряжение (силу тока и т.д.).
Обозначают коэффициент трансформации чаще всего буквами k или n (могут встречаться другие обозначения).
Если , то такой трансформатор называют повышающим, если больше единицы — то понижающим.
Разные виды трансформаторов и их коэффициенты трансформации
Так, при помощи трансформатора с параллельным подключением обмотки к источнику электрической энергии производят масштабирование напряжения (трансформатор напряжения), при этом коэффициент трансформации рассчитывают:
где — напряжение на входе трансформатора (на первичной обмотке); — напряжение на выходе трансформатора (на вторичной обмотке); — количество витков на первичной обмотке; — число витков на вторичной обмотке.
Если потерями в обмотках трансформатора пренебрегать нельзя, то коэффициент трансформации можно найти по формуле:
где — сопротивление первичной обмотки трансформатора — сопротивление вторичной обмотки; — ЭДС, которая наводится в каждом из витков обмоток; и — силы токов в соответствующих обмотках.
При помощи трансформатора с параллельным подключением можно масштабировать сопротивление. Расчет коэффициента трансформации при этом связывают с равенством мощности получаемой трансформатором от источника и отдаваемой во вторичную цепь. При этом потерями пренебрегают. Обозначим коэффициент трансформации сопротивления . Можно записать, что:
где — коэффициент трансформации по напряжению; — входное сопротивление трансформатора и нагрузки по отношению к его первичной цепи, — сопротивление нагрузки во вторичной цепи.
Если проводят масштабирование силы тока, то используют трансформатор с последовательным подключением первичной обмотки к источнику (трансформатор тока). Тогда коэффициент трансформации вычисляют как:
Последнее равенство в выражении (3) справедливо, только если не учитывать потери и считать, что:
Иначе возникает сила тока , которая показывает ток, составленный из тока намагничивания и активных потерь в магнитопроводе (этот ток еще называют током «холостого хода»). Если то мы имеем связь между силами токов, текущими в обмотках трансформатора в виде:
Примеры решения задач
Первичная обмотка трансформатора имеет 2000 витков, а вторичная 200 витков. Каков коэффициент трансформации? Трансформатор работает как повышающий или как понижающий? Чему будет равно напряжение на вторичной обмотке трансформатора, если на первичную обмотку подается напряжение ?
В качестве основы для решения задачи используем выражение:
Так как число витков нам известно, вычислим коэффициент трансформации:
Выразим из формулы (1.1) , имеем:
Вычислим искомое напряжение:
1) 2) Трансформатор понижающий. 3) В.
Автотрансформатор — это катушка, которая надета на железный сердечник и имеет несколько отводов (рис.1) через назначенное количество витков. Между зажимами 1-2 имеется 100 витков, между точками 2-3 имеется 200 витков, между зажимами 3 и 4 — 300 витков. К зажимам 1 и 3 подано напряжения 220 В. Каким будет напряжение если снимать его между зажимами 1 и 2? Каков при этом коэффициент трансформации?
Число витков между зажимами 1-2 , между зажимами 1-3: В качестве основы для решения задачи используем формулу:
Выразим искомое напряжение:
Коэффициент трансформации будет равен:
Коэффициент трансформации трансформатора
December 22, 2012
Основу работы трансформатора определяет явление электромагнитной индукции. Сердечник трансформатора состоит из отдельных стальных пластин, собранных в замкнутую раму той или иной формы. На сердечнике помещены две обмотки S₁ и S₂ с числом витков w₁ и w₂. Обмотки имеют незначительное сопротивление и большую индуктивность.
Приложим к обоим концам обмотки S₁, которую назовем первичной, переменное напряжение U₁. По обмотке пройдет переменный ток I, который намагнитит сталь сердечника, создав в нем магнитный переменный поток. Намагничивающее действие тока пропорционально числу ампер-витков (Iw₁).
По мере нарастания тока будет расти магнитный поток и в сердечнике, изменение которого возбудит в витках катушки электродвижущую силу самоиндукции. Как только она достигнет величины приложенного напряжения, рост тока в первичной цепи прекратится. Таким образом, в цепи первичной обмотки трансформатора будут действовать приложенное напряжение U₁ и электродвижущая сила самоиндукции Е₁. При этом напряжение U₁ больше Е₁ на величину падения напряжения в обмотке, которое очень мало. Следовательно, приближенно можно написать:
Магнитный переменный поток, возникающий в сердечнике трансформатора, проходит также по виткам его вторичной обмотки, возбуждая в каждом витке этой обмотки такую же по величине электродвижущую силу, как и в каждом витке первичной обмотки.
Исходя из того, что число витков первичной обмотки равняется w₁, а вторичной — w₂, то индуктированные в них силы будут, соответственно, равны:
где е – электродвижущая сила, возникающая в одном витке.
Напряжение же U₂ на концах разомкнутой обмотки равно электродвижущей силе в ней, т.е.:
Следовательно, можно сделать вывод, что величина напряжения на обоих концах первичной обмотки трансформатора относится так к величине напряжения на концах второй обмотки, как число витков первичной обмотки относится к количеству витков вторичной обмотки:
Постоянная величина k – коэффициент трансформации трансформатора тока.
В том случае, если нужно повысить напряжение, устраивают вторичную обмотку с увеличенным числом витков (т.н. повышающий трансформатор); в случае же, когда надо понизить напряжение, вторичную обмотку трансформатора берут с меньшим числом витков (понижающий трансформатор). Один трансформатор может действовать и как повышающий коэффициент трансформации, и как понижающий, в зависимости от того, какая обмотка применяется как первичная.
Вторичная обмотка пока разомкнута (тока в ней нет). Трансформатор работает вхолостую. При этом он потребляет небольшую энергию, так как ток, намагничивающий стальной сердечник, вследствие большой индуктивности катушки очень мал. Передача энергии во вторичную цепь из первичной при этом отсутствует. Данный опыт дает возможность узнать коэффициент трансформации, сопротивление холостого хода и ток трансформатора.
Нагрузим трансформатор, замкнув через реостат цепь вторичной обмотки. По ней теперь пойдет индукционный ток, обозначим его буквой I₂. Этот ток, согласно закону Ленца, вызовет уменьшение магнитного потока в сердечнике. Но ослабление магнитного потока в сердечнике приведет к уменьшению электродвижущей силы самоиндукции в первичной обмотке и к нарушению равновесия между этой силой Е₁ и напряжением U₁, даваемым генератором на первичную обмотку. В результате этого в первичной обмотке ток увеличится на какую-то величину I₁ и станет равным I + I₁. Вследствие увеличения тока магнитный поток в сердечнике трансформатора возрастет до прежней величины, и нарушенное равновесие между U₁ и E₁ снова восстановится. Таким образом, появление вторичного тока I₂ вызывает увеличение тока в первичной обмотке на величину I₁, которая определит нагрузочный ток первичной обмотки трансформатора.
При нагрузке трансформатора совершается непрерывная передача энергии во вторичную цепь из первичной. По закону сохранения и превращения энергии, мощность тока в первичной цепи равняется мощности тока во вторичной цепи; следовательно, должно действовать равенство:
В действительности же это равенство не соблюдается, так как при работе трансформатора есть потери, хоть и небольшие. Коэффициент трансформации составляет около 94-99%.
15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.
11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.
Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.
20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.
10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров «Фотошопа» подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.
Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.
Что такое коэффициент трансформации
- Основной параметр трансформатора
- Коэффициент трансформации электросчетчика
- Как определить коэффициент трансформации
При использовании различных типов трансформаторов, а также счетчиков электрической энергии нередко возникает вопрос, что такое коэффициент трансформации. По своей сути, данный параметр представляет собой техническую величину. В качестве примера можно взять счетчик электроэнергии прямого включения, работающий с малыми токами нагрузки. Однако токи, которые нужно измерить, имеют гораздо более высокое значение. Их требуется уменьшить, чтобы прибор учета не сгорел. С этой целью используются трансформаторы тока. подбираемые в соответствии с нагрузкой потребителя, а также силовой трансформатор. В связи с этим, коэффициент трансформации может быть разным, в зависимости от оборудования, установленного в квартире.
Счетчик, работающий через трансформатор, учитывает не реальное значение потребленной электроэнергии, а той, которая понижена тока в определенное количество раз. Эти разы и будут коэффициентом трансформации. Данная величина показывает во сколько раз входной ток или напряжение, больше или меньше такого же параметра на выходе.
Основной параметр трансформатора
Основной характеристикой любого трансформатора является коэффициент трансформации. Он определяется как отношение количества витков первичной обмотки к числу витков во вторичной обмотке. Кроме того, эта величина может быть рассчитана путем деления соответствующих показателей ЭДС в обмотках.
При наличии идеальных условий, когда отсутствуют электрические потери, решение вопроса, как определить коэффициент, осуществляется с помощью соотношения напряжений на зажимах каждой из обмоток. Если в трансформаторе имеется больше двух обмоток, данная величина рассчитывается поочередно для каждой обмотки.
В понижающих трансформаторах коэффициент трансформации будет выше единицы, в повышающих устройствах этот показатель составляет от 0 до 1. Фактически этот показатель определяет во сколько раз трансформатор напряжения понижает подаваемое напряжение. С его помощью можно определить правильность числа витков. Данный коэффициент определяется на всех имеющихся фазах и на каждом ответвлении сети. Полученные данные используются для расчетов, позволяют выявить обрывы проводов в обмотках и определить полярность каждой из них.
Определить реальный коэффициент трансформации тока трансформатора можно с использованием двух вольтметров. В трансформаторах с тремя обмотками измерения выполняются как минимум для двух пар обмоток с наименьшим током короткого замыкания. Если некоторые элементы трансформатора и ответвления закрыты кожухом, то определение коэффициента становится возможным только для зажимов обмоток, выведенных наружу.
В однофазных трансформаторах для расчета рабочего коэффициента трансформации используется специальная формула, в которой напряжение, подведенное к первичной цепи, делится на одновременно измеряемое напряжение во вторичной цепи. Для этого нужно заранее знать, в чем измеряется каждый показатель.
Запрещается подключение к обмоткам напряжения существенно выше или ниже номинального значения, указанного в паспорте трансформатора. Это приведет к росту погрешностей измерений вследствие потерь тока, потребляемого измерительным прибором, к которому подключается трехфазный трансформатор. Кроме того, на точность измерений влияет ток холостого хода. Для большинства устройств разработана специальная таблица, где указаны довольно точные данные, которые можно использовать при расчетах.
Измерения должны проводиться вольтметрами с классом точности 0,2-0,5. Более простое и быстрое определение коэффициента возможно с помощью специальных универсальных приборов, позволяющих обойтись без использования посторонних источников переменного напряжения.
Коэффициент трансформации электросчетчика
Величина коэффициента трансформации широко применяется для приборов учета электроэнергии. Эти данные необходимы для правильного выбора электросчетчика и дальнейших расчетов реального энергопотребления. С этой целью используется дополнительный показатель – расчетный коэффициент учета.
Для того чтобы определить данную величину с прибора учета электроэнергии снимаются показания и умножаются на коэффициент трансформации подключенного трансформаторного устройства. Например, решая задачу, как найти нужный показатель, 60 кВт/ч нужно умножить на коэффициент, равный 20 (30, 40 или 60). В результате умножения получается 60 х 20 = 1200 кВт/ч. Полученной значение и будет реальным расходом электроэнергии.
Существуют различные виды приборов учета. По своему принципу действия они могут быть одно- или трехфазными. Они не подключаются напрямую, между ними в цепь обязательно включается трансформатор тока. Некоторые конструкции счетчиков предполагают возможность прямого включения. В сетях с напряжением до 380 вольт используются счетчики 5-20 ампер. На счетчик поступает электроэнергия в чистом виде, с постоянным значением.
В настоящее время используются индукционные приборы учета, которые постепенно заменяются электронными моделями. Они считаются устаревшими, поскольку не могут выполнять учет потребленной электроэнергии по разным тарифам. Кроме того, они не могут передавать данные на удаленное расстояние. Поэтому на смену им приходят электронные счетчики, способные напрямую преобразовывать поступающий ток в определенные сигналы. В этих конструкциях отсутствуют вращающиеся части, что способствует существенному повышению их надежности и долговечности. Коэффициент трансформации таких устройств оказывает прямое влияние на точность получаемых данных.
Как определить коэффициент трансформации
Источники: http://ru.solverbook.com/spravochnik/koefficienty/koefficient-transformacii-transformatora/, http://fb.ru/article/46046/koeffitsient-transformatsii-transformatora, http://electric-220.ru/news/chto_takoe_koehfficient_transformacii/2017-01-19-1160