Чтение принципиальных электрических схем

Как читать электрические схемы – графические, буквенные и цифровые обозначения

Новички, которые пытаются самостоятельно собрать какие-то электронные схемы и приборы, сталкиваются с самым первым в своей новой деятельности вопросе, как читать электрические схемы? Вопрос, на самом деле серьезный, ведь прежде, чем собрать схему, ее необходимо как-то обозначить на бумаге. Или найти готовый вариант для воплощения в жизнь. То есть, чтение электрических схем – основная задача любого радиолюбителя или электрика.

Чтение принципиальных электрических схем

Что такое электрическая схема

Это графическое изображение, где указаны все электронные элементы, связанные между собой проводниками. Поэтому знание электрических цепочек – это залог правильно собранного электронного прибора. А, значит, основная задача сборщика – это знать, как на схеме обозначаются электронные компоненты, какими графическими значками и дополнительными буквенными или цифровыми значениями.

Все принципиальные электрические схемы состоят из электронных элементов, которые имеют условное графическое обозначение, короче УЗО.

Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Вот так обозначается резистор:

Как видите, очень похоже на оригинал. А вот так обозначается динамик:

То же большое сходство. То есть, существуют некоторые позиции, которые сразу же можно опознать. И это очень удобно. Но есть и совершенно непохожие позиции, которые или надо запомнить, или надо знать их конструкции, чтобы легко определять на принципиальной схеме. К примеру, конденсатор на рисунке снизу.

Тот, кто давно разбирается в электротехнике, то знает, что конденсатор – это две пластинки, между которыми размещен диэлектрик. Поэтому в графическом изображении был и выбран этот значок, он в точности повторяет конструкцию самого элемента.

Самые сложные значки у полупроводниковых элементов. Давайте рассмотрим транзистор. Необходимо отметить, что у этого прибора три выхода: эмиттер, база и коллектор. Но и это еще не все. У биполярных транзисторов встречаются две структуры: «n – p – n» и «p – n – p». Поэтому и на схеме они обозначаются по-разному:

Как видите, транзистор по своему изображению на него-то и не похож. Хотя, если знать структуру самого элемента, то можно сообразить, что это именно он и есть.

Простые схемы для начинающих, зная несколько значков, можно читать без проблем. Но практика показывает, что простыми электросхемами в современных электронных приборах практически не обходятся. Так что придется учить все, что касается принципиальных схем. А, значит, необходимо разобраться не только со значками, но и с буквенными и цифровыми обозначениями.

Что обозначают буквы и цифры

Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы? Начнем с букв. Рядом с каждым УЗО всегда проставляется латинская буква. По сути, это буквенное обозначение элемента. Это сделано специально, чтобы при описании схемы или устройства электронного прибора, можно было бы обозначать его детали. То есть, не писать, что это резистор или конденсатор, а ставить условное обозначение. Это и проще, и удобнее.

Теперь цифровое обозначение. Понятно, что в любой электронной схеме всегда найдутся элементы одного значения, то есть, однотипных. Поэтому каждую такую деталь пронумеровывают. И вся эта цифровая нумерация идет от верхнего левого угла схемы, затем вниз, далее вверх и опять вниз.

Внимание! Специалисты называют такую нумерацию правилом «И». Если обратите внимание, то движение по схеме так и происходит.

Чтение принципиальных электрических схем

И последнее. Все электронные элементы имеют определенные свои параметры. Их обычно также прописывают рядом со значком или выносят в отдельную таблицу. К примеру, рядом с конденсатором может быть указана его номинальная емкость в микро- или пикофарадах, а также номинальное его напряжение (если такая необходимость возникает). Вообще, все, что связано с полупроводниковыми деталями должно обязательно дополняться информацией. Это не только упрощает чтение схемы, но и позволяет не ошибиться при выборе самого элемента в процессе сборки.

Иногда цифровые обозначения на электросхемах отсутствуют. Что это значит? К примеру, взять резистор. Это говорит о том, что в данной электрической схеме показатель его мощности не имеет значения. То есть, можно установить даже самый маломощный вариант, который выдержит нагрузки схемы, потому что в ней течет ток малой силы.

И еще несколько обозначений. Проводники графически обозначаются прямой непрерывной линией, места пайки точкой. Но учтите, что точка ставиться только в том месте, где соединяются три или более проводников.

Чтение принципиальных электрических схем

Заключение по теме

Итак, вопрос, как научится читать схемы электрические, не самый простой. Вам потребуется не только знание УЗО, но и знание, касающиеся параметров каждого элемента, его структуры и конструкции, а также принципа работы, и для чего он необходим. То есть, придется учить все азы радио- и электротехники. Сложно? Не без этого. Но если вы поймете, как все работает, то для вас откроются горизонты, о которых вы и не мечтали.

Условные обозначения на электрических схемах

  • Чтение принципиальных электрических схем

    Обозначение розетки на электрической схеме по ГОСТам

  • Чтение принципиальных электрических схем

    Как определить полярность электролитического конденсатора

    Как научиться читать и составлять электрические схемы

    Электрические принципиальные схемы

    Основным назначением принципиальных электрических схем является отражение с достаточной полнотой и наглядностью взаимной связи отдельных приборов, средств автоматизации и вспомогательной аппаратуры, входящих в состав функциональных узлов систем автоматизации, с учетом последовательности их работы и принципа действия. Принципиальные электрические схемы служат для изучения принципа действия системы автоматизации, они необходимы при производстве пуско-наладочных работ и в эксплуатации электрооборудования.

    Принципиальные электрические схемы являются основанием для разработки других документов проекта: монтажных схем и таблиц щитов и пультов, схем соединения внешних проводок, схем подключения и др.

    При разработке систем автоматизации технологических процессов обычно выполняют принципиальные электрические схемы самостоятельных элементов, установок или участков автоматизируемой системы, например схему управления задвижкой, схему автоматического и дистанционного управления насосом, схему сигнализации уровня в резервуаре и т. п.

    Принципиальные электрические схемы составляют на основании схем автоматизации, исходя из заданных алгоритмов функционирования отдельных узлов контроля, сигнализации, автоматического регулирования и управления и общих технических требований, предъявляемых к автоматизируемому объекту.

    На принципиальных электрических схемах в условном виде изображают приборы, аппараты, линии связи между отдельными элементами, блоками и модулями этих устройств.

    В общем случае принципиальные схемы содержат:

    1) условные изображения принципа действия того или иного функционального узла системы автоматизации;

    2) поясняющие надписи;

    3) части отдельных элементов (приборов, электрических аппаратов) данной схемы, используемые в других схемах, а также элементы устройств из других схем;

    4) диаграммы переключений контактов многопозиционных устройств;

    5) перечень используемых в данной схеме приборов, аппаратуры;

    6) перечень чертежей, относящихся к данной схеме, общие пояснения и примечания. Для чтения принципиальных схем необходимо знать алгоритм функционирования схемы, понимать принцип действия приборов, аппаратов, на базе которых построена принципиальная схема.

    Принципиальные схемы систем контроля и управления по назначению могут подразделяться на схемы управления, технологического контроля и сигнализации, автоматического регулирования и питания. Принципиальные схемы по видам могут быть электрическими, пневматическими, гидравлическими и комбинированными. В настоящее время наиболее широкое применение находят электрические и пневматические схемы.

    Как прочитать электрическую принципиальную схему

    Принципиальная электрическая схема — первый рабочий документ, на основании которого:

    1) выполняют чертежи для изготовления изделий (общие виды и монтажные схемы и таблицы щитов, пультов, стативов и т. п.) и соединений их с приборами, исполнительными механизмами и между собой;

    2) проверяют правильность выполненных соединений;

    3) задают уставки аппаратам защиты, средствам контроля и регулирования процесса;

    4) настраивают путевые и конечные выключатели;

    5) анализируют схему как в процессе проектирования, так и при наладке и эксплуатации при отклонении от заданного режима работы установки, преждевременном выходе из строя какого-либо элемента и т. п.

    Чтение принципиальных электрических схемТаким образом, в зависимости от выполняемой работы чтение принципиальной схемы преследует разные цели.

    Кроме того, если чтение монтажных схем сводится к тому, чтобы определить, что, где и как нужно установить, проложить и соединить, то чтение принципиальной схемы гораздо сложнее. Во многих случаях оно требует глубоких знаний, владения методикой чтения и умения анализировать полученные сведения. И, наконец, ошибка, допущенная в принципиальной схеме, неизбежно будет повторяться во всех последующих документах. В итоге вновь придется возвращаться к чтению принципиальной схемы, чтобы выявить, какая в ней допущена ошибка или что в конкретном случае не соответствует правильной принципиальной схеме (например, многоконтактное программное реле присоединено правильно, но установленная при настройке длительность или очередность переключения контактов не соответствует заданию).

    Перечисленные задачи довольно сложны, и рассмотрение многих из них выходит за рамки данной статьи. Тем не менее полезно пояснить, в чем состоит их существо и перечислить основные технические приемы решения.

    1. Чтение принципиальной схемы всегда начинают с общего ознакомления с нею и перечнем элементов, находят на схеме каждый из них, читают все примечания и пояснения.

    2. Определяют систему электропитания электродвигателей, обмоток магнитных пускателей, реле, электромагнитов, комплектных приборов, регуляторов и т. п. Для этого находят на схеме все источники питания, выявляют по каждому из них род тока, номинальное напряжение, фазировку в цепях переменного тока и полярность в цепях постоянного тока и сопоставляют полученные данные с номинальными данными используемой аппаратуры.

    Выявляют по схеме общие коммутационные аппараты, а также аппараты защиты: автоматы, предохранители, реле максимального тока и минимального напряжения и т. п. Определяют по надписям на схеме, таблицам или примечаниям уставки аппаратов и, наконец, оценивают зону защиты каждого из них.

    Ознакомление с системой электропитания может понадобиться для: выявления причин нарушения питания; определения очередности, в которой следует на схему подавать питание (это не всегда безразлично); проверки правильности фазировки и полярности (неправильная фазировка может, например, в схемах резервирования привести к короткому замыканию, изменению направления вращения электродвигателей, пробою конденсаторов, нарушению разделения цепей с помощью диодов, отказу поляризованных реле и т. п.); оценки последствий перегорания каждого предохранителя.

    Чтение принципиальных электрических схем3. Изучают всевозможные цепи каждого электроприемника: электродвигателя, обмотки магнитного пускателя, реле, прибора и т. п. Но электроприемников в схеме много и далеко не безразлично, с какого из них начинать чтение схемы — это определяется поставленной задачей. Если нужно определить по схеме условия ее работы (или проверить, соответствуют ли они заданным), то начинают с основного электроприемника, например с электродвигателя задвижки. Последующие электроприемники выявятся сами собой.

    Например, для пуска электродвигателя нужно включить магнитный пускатель. Следовательно, следующим электроприемником должна быть обмотка магнитного пускателя. Если в ее цепь входит контакт промежуточного реле, надо рассматривать цепь его обмотки и т. п. Но может быть и другая задача: какой-то элемент схемы отказал, например не горит определенная сигнальная лампа. Тогда первым электроприемником будет именно она.

    Очень важно подчеркнуть, что если не придерживаться при чтении схемы определенной целенаправленности, то можно затратить много времени, ничего не решив.

    Итак, изучая выбранный электроприемник, надо проследить все возможные его цепи от полюса к полюсу (от фазы к фазе, от фазы к нулю в зависимости от системы питания). При этом надо, во-первых, выявить все контакты, диоды, резисторы и т. п. входящие в цепь.

    Особо подчеркнем, что нельзя рассматривать несколько цепей сразу. Нужно сначала изучить, например, цепь включения обмотки магнитного пускателя «Вперед» при местном управлении, установив, в каком положении должны быть элементы, входящие в эту цепь (переключатель режимов в положении «Местное управление», магнитный пускатель «Назад» отключен), что нужно сделать, чтобы включить обмотку магнитного пускателя (нажать выключатель кнопочный «Вперед»), и т. п. Затем следует мысленно отключить магнитный пускатель. Рассмотрев цепь местного управления, мысленно переводят переключатель режимов в положение «Автоматическое управление» и изучают следующую цепь.

    Ознакомление с каждой цепью электрической схемы имеет целью:

    а) определить условия действия, которым удовлетворяет схема;

    б) выявить ошибки; например, в цепи могут быть соединенные последовательно контакты, которые никогда одновременно не должны быть замкнуты;

    в) определить возможные причины отказа. В неисправную цепь, например, входят контакты трех аппаратов. Рассматривая каждый из них, легко обнаружить неисправный. Такие задачи возникают при наладке и устранении неполадок в процессе эксплуатации;

    г) установить элементы, в которых могут быть нарушены временные зависимости либо в результате неправильной регулировки, либо из-за неправильной оценки проектировщиком реальных условий эксплуатации.

    Типичными недостатками являются слишком короткие импульсы (управляемый механизм не успевает завершить начатый цикл), слишком длинные импульсы (управляемый механизм, за вершив цикл, начинает его повторять), нарушение необходимой очередности переключения (например, вентили и насос включаются не в той очередности, как надо, или между операциями не соблюдаются достаточные интервалы);

    д) выявить аппараты, которым могут быть заданы неправильные уставки ; типичный пример — неправильная уставка токового реле в схеме управления задвижкой;

    е) выявить аппараты, коммутационная способность которых недостаточна для коммутируемых цепей, или номинальное напряжение ниже необходимого, или рабочие токи цепей больше номинальных токов аппарата и т. п.

    Типичные примеры: контакты электроконтактного термометра непосредственно введены в цепь магнитного пускателя, что совершенно недопустимо; в цепи напряжения 220 В применен диод на обратное напряжение 250 В, что не достаточно, так как он может оказаться под напряжением 310 В (К2-220 В); номинальный ток диода 0,3 А, но он включен в цепь, через которую проходит ток 0,4 А, что вызовет недопустимый перегрев; сигнальная коммутаторная лампа 24 В, 0,1 А включена на напряжение 220 В через добавочный резистор типа ПЭ-10 сопротивлением 220 Ом. Лампа будет светить нормально, но резистор сгорит, так как выделяемая в нем мощность примерно вдвое выше номинальной;

    ж) выявить аппараты, подверженные действию коммутационных перенапряжений, и оценить меры защиты от них (например, гасящие контуры);

    з) выявить приборы, на работу которых могут оказывать недопустимое влияние смежные цепи, и оценить средства защиты от влияний;

    и) выявить возможные ложные цепи как в нормальных режимах, так и во время переходных процессов, например перезаряд конденсаторов, поступление в чувствительный электроприемник энергии, освободившейся при отключении индуктивности, и т. п.

    Ложные цепи иногда образуются не только при непредвиденном соединении, но и при незамыкании, контакта, перегорании одного предохранителя, в то время как остальные остались исправными. Например, промежуточное реле датчика технологического контроля включено через одну цепь питания, а его размыкающий контакт — через другую. При перегорании предохранителя промежуточное реле отпустит, что будет воспринято схемой как нарушение режима. В данном случае нельзя разделить цепи питания либо нужно иначе составлять схему и т. п.

    Ложные цепи могут образоваться при несоблюдении очередности подачи питающих напряжений, что говорит о низком качестве проектирования. В правильно составленных схемах очередность подачи питающих напряжений, а также восстановление их после нарушений не должны приводить к каким-либо оперативным переключениям;

    к) оценить последствия нарушения изоляции поочередно в каждой точке схемы. Например, если кнопки присоединены к нулевому рабочему проводнику, а обмотка пускателя — к фазному (необходимо включать наоборот), то при подключении кнопочного выключателя «Стоп» к проводнику заземления пускатель невозможно будет отключить. Если замкнется на землю провод после кнопочного выключателя «Пуск», произойдет самовключение пускателя;

    л) оценить назначение каждого контакта, диода, резистора, конденсатора, для чего исходят из предположения, что рассматриваемый элемент или контакт отсутствует, и оценивают, к каким это приведет последствиям.

    4. Устанавливают поведение схемы при частичном отключении питания, а также при его восстановлении. Этот важнейший вопрос, к сожалению, часто недооценивают, поэтому одной из основных задач чтения схемы является проверка: сможет ли устройство прийти из любого промежуточного состояния в рабочее и не произойдут ли при этом непредвиденные оперативные переключения. Именно поэтому стандарт предписывает изображать схемы в предположении, что питание отключено, а аппараты и их части (например, якоря реле) не подвержены принудительным воздействиям. С этого исходного положения и нужно анализировать схемы. Большую помощь при анализе схем оказывают временные диаграммы взаимодействия, отражающие динамику работы схемы, а не только какое-то установившееся ее состояние.

    Статьи и схемы

    Полезное для электрика

    Читаем электрические схемы. Часть 1

    «Как читать электрические схемы?». Пожалуй, это самый часто задаваемый вопрос в рунете. Если для того, чтобы научиться читать и писать, мы изучали азбуку, то здесь почти то же самое. Чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться. До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш ГОСТ-вариант обозначения радиоэлементов.

    Ладно, ближе к делу. Давайте рассмотрим простенькую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

    Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

    Ну что же, давайте ее анализировать.

    В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.

    Итак, вроде бы определились с задачей этой схемы. Прямые линии — это проводочки, по которым будет бежать электрический ток. Их задача — соединять радиоэлементы.

    Точка, где соединяются три и более проводочков, называется узлом. Можно сказать, в этом месте проводочки спаиваются:

    Если пристально вглядеться в схему, то можно заметить пересечение двух проводочков

    Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте проводочки не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

    Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

    Если бы между ними было соединение, то мы бы увидели вот такую картину:

    Давайте еще раз рассмотрим нашу схему.

    Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

    Итак, давайте первым делом разберемся с надписями. R — это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер «2». В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 КилоОм. Ну как-то вот так.

    Как же обозначаются остальные радиоэлементы?

    Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды — это группа. к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов.

    А — это различные устройства (например, усилители)

    В — преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.

    D — схемы интегральные и различные модули

    E — разные элементы, которые не попадают ни в одну группу

    F — разрядники, предохранители, защитные устройства

    H — устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

    Р — приборы и измерительное оборудование

    Q — выключатели и разъединители в силовых цепях. То есть в цепях, где «гуляет» большое напряжение и большая сила тока

    S — коммутационные устройства в цепях управления, сигнализации и в цепях измерения

    U — преобразователи электрических величин в электрические, устройства связи

    V — полупроводниковые приборы

    W — линии и элементы сверхвысокой частоты, антенны

    Y — механические устройства с электромагнитным приводом

    Z — оконечные устройства, фильтры, ограничители

    Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

    BD — детектор ионизирующих излучений

    BR — датчик частоты вращения

    Источники: http://onlineelektrik.ru/eoborudovanie/kondensatori/kak-chitat-elektricheskie-sxemy-graficheskie-bukvennye-i-cifrovye-oboznacheniya.html, http://electricalschool.info/main/electroshemy/187-kak-nauchitsja-chitat-i-sostavljat.html, http://www.ruselectronic.com/news/chitaem-elektroskhemy-chast-1/

  • Рейтинг
    ( Пока оценок нет )
    Всё об электрике в доме
    Добавить комментарий