Тепловая защита электродвигателя

Виды и аппараты защит электродвигателей

Аппараты максимальной токовой защиты. При работе ЭП может произойти замыкание электрических цепей между собой на землю (корпус), а также увеличение тока в силовых цепях свыше допустимого предела, вызванное стопорением движения исполнительного органа рабочей машины, обрывом одной из фаз питающего напряжения, резким снижением тока возбужден ДПТ. Для защиты ЭП и питающей сети от появляющихся в этих случаях недопустимо больших токов (сверхтоков) предусматривается максимальная токовая защита, которая может реализовываться различными средствами — с помощью плавких предохранителей, реле максимального тока и автоматических выключателей.

Плавкие предохранители (FU) — включаются в каждую линию (фазу) питающей сети между выключателем напряжения сети и контактами линейного контактора КМ, а также в цепи управления. На рисунке 2 показаны соответственно схемы защиты предохранителями АД, ДПТ и цепей управления.

Рисунок 2 – Защита цепей предохранителями

Основными элементами предохранителя являются плавкая вставка и дугогасительное устройство. Выбор плавкой вставки предохранителей производится по току, который рассчитывается таким образом, чтобы она не перегорала от пускового тока двигателя.

Для защиты электрических цепей ЭП при напряжении до 1000 В применяются следующие типы предохранителей: трубчатые без наполнителя серии ПР2; быстродействующие серии ПНБ-5; с высокой разрывной способностью серии ПП 31; трубчатые разборные с закрытыми патронами и наполнителем серии ПН 2; резьбовые серии ПРС. Плавкие вставки этих предохранителей калибруются на токи от 6 до 1000 А.

Реле максимального тока используются в основном в ЭП средней и большой мощности. Катушки этих реле FA1 и FA2 включаются в две фазы трехфазных двигателей переменного тока и в один или два полюса ДПТ между выключателем QS и контактами линейного контактора КМ. Размыкающие контакты этих реле включаются также в цепь катушки линейного контактора КМ. При возникновении сверхтоков в контролируемых цепях, превышающих токи срабатывания (уставки) реле FA1 и FA2, контакты этих реле размыкаются и силовые контакты линейного контактора КМ отключают двигатель от питающей сети (рис.3).

Уставки реле максимального тока должны выбираться таким образом, чтобы не происходило отключения двигателей при их пуске или других переходных процессах, т. е. когда токи в силовых цепях в несколько раз превышают номинальный уровень.

В качестве реле максимального тока в ЭП применяются реле мгновенного действия серии РЭВ 570 для цепей постоянного тока от 0,6 до 1200 А и серии РЭВ 571Т для цепей переменного тока от 0,6 до 630 А. Время их срабатывания порядка 0,05 с. В схемах управления применяются также реле серий РЭ 70, РЭВ 830, РЭВ 302 и др.

Автоматические воздушные выключатели (автоматы — QF). Эти комплексные многоцелевые аппараты обеспечивают ручное включение и отключение двигателей, их защиту от сверхтоков, перегрузок и снижения питающего напряжения. Для обеспечения выполнения этих функций автомат имеет контактную систему, замыкание и размыкание которой осуществляется вручную с помощью рукоятки или кнопки, максимальное токовое реле и тепловое токовое реле.

Важной частью автомата является механизм свободного сцепления,

который обеспечивает его отключение при поступлении управляющих или защитных воздействий, например при протекании токов перегрузки, коротком замыкании, снижении напряжения сети, а также при необходимости дистанционного отключения автомата.

Упрощенное устройство автомата показано на рисунке 4. Рабочий ток нагрузки протекает через контакт 1 автомата, нагреватель теплового реле 6 и катушку 9 реле максимального тока. При коротком замыкании в контролируемой цепи сердечник 10 реле максимального тока втягивается в катушку 9 и через толкатель 8 воздействует на рычаг 5 механизма свободного расцепления. Последний поворачивается по часовой стрелке и приподнимает защелку 4. При этом освобождается рычаг 3 и, воздействуя на пружину 2, размыкает контакты 1 автомата.

Рисунок 4 – Схема автоматического выключателя (а) и его условное графическое и буквенное обозначение (б)

Аналогично происходит отключение автомата при перегрузке цепи, когда ток в ней больше номинального (расчетного), но меньше тока короткого замыкания. В этом случае ток, проходя по нагревателю 6 теплового реле, вызывает нагрев биметаллической пластины 7, в результате чего свободный конец этой пластины поднимается вверх и через рычаг 5 открывает защелку 4, вызывая этим отключение контактов автомата.

Часто в автоматах применяют тепловые расцепители без нагревателя, в этом случае контролируемый ток пропускается непосредственно через биметаллическую пластину. В маломощных автоматах такой расцепитель может выполнять также функции элемента максимальной токовой защиты.

Автоматические выключатели широко используются для коммутации и защиты силовых и маломощных цепей ЭП всех видов.

Применяемые в ЭП автоматические выключатели серий АП 50, АК 63, А 3000, А 3700, АЕ 2000, ВА, ВАБ, «Электрон» различаются между собой числом контактов (полюсов), уровнями номинальных тока и напряжения, набором и исполнением реализуемых защит, отключающей способностью, быстродействием. Диапазон их номинальных токов составляет 10. 10 000 А, а предельных коммутируемых токов 0,3. 100 кА. Время включения различных автоматов находится в пределах от 0,02 до 0,7 с.

Нулевая защита. При значительном снижении напряжения сети или его исчезновении эта защита обеспечивает отключение двигателей и предотвращает самопроизвольное их включение (самозапуск) после восстановления напряжения.

В тех случаях, когда двигатели управляются кнопками контакторов или магнитных пускателей, нулевая защита осуществляется самими этими аппаратами без применения дополнительных средств. Например, если в схемах исчезло или сильно понизилось напряжение сети, катушка линейного контактора КМ потеряет питание и он отключит двигатель от сети. При восстановлении напряжения включение двигателя возможно только после нажатия на кнопку управления SB2.

Тепловая защита отключает двигатель от источника питания, если, вследствие протекания по его цепям повышенных токов происходит значительный нагрев его обмоток. Такая перегрузка возникает, например, при обрыве одной из фаз трехфазного АД или СД.

Тепловая защита двигателей осуществляется с помощью тепловых, максимальных токовых реле и автоматических выключателей. Тепловые реле (КК) включаются в две-три фазы трехфазных двигателей непосредственно или через трансформаторы тока (рисунок 5). Для защиты ДПТ тепловые реле включаются в один или два полюса цепи их питания. Размыкающие контакты тепловых реле включаются в цепи катушек главных (линейных) контакторов или в цепь защитного реле.

Действие теплового реле основано на эффекте изгибания биметаллической пластинки при нагревании из-за различных температурных коэффициентов линейного расширения образующих ее металлов.

Рисунок 5 – Включение тепловых реле в электрические цепи

В ЭП применяются электротепловые двухполюсные реле серий ТРН на номинальные токи от 0,32 до 40 А, однополюсные реле серий ТРТП на токи от 1,75 до 550 А и трехполюсные реле серий РТЛ на токи от 0,17 до 200 А. Эти реле имеют регулируемую уставку тепловой защиты; при токе 1,2Iном время их срабатывания 20 мин.

Тепловая защита двигателей может осуществляться также автоматическими выключателями и магнитными пускателями, если они имеют встроенные тепловые расцепители.

При повторно-кратковременных режимах работы ЭП, когда процессы нагрева реле и двигателя различны, защита двигателей от перегрузок осуществляется с помощью максимальных токовых реле FA1 и FA2. Токи уставок этих реле выбираются на 20. 30% выше номинального тока двигателя. Так как, ток уставки реле в этом случае ниже пускового тока, то при пуске двигателя его контакты шунтируются контактами реле времени, имеющего выдержку времени несколько большую времени пуска двигателя.

185.154.22.117 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Инструкция по выбору теплового реле для защиты электродвигателя

22.06.2016 нет комментариев 19 005 просмотров

Продолжительная работа механизма на максимуме вызывает перегрев обмоток и порчу изоляции, в результате чего происходит межвитковое замыкание, перерастающее в обширное выгорание полюсов двигателя и дорогостоящий ремонт. Чтобы этого не происходило, в цепь питания устанавливается реле, которое называют тепловым или «теплушкой». По цепи питания данный аппарат контролирует величину тока и при длительном отклонении от номинала установки, размыкает контакты, лишая питания цепь управления, размыкая пусковое устройство. В этой статье мы расскажем, как выбрать тепловое реле для двигателя по мощности и току.

Методика выбора

Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.

Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.

Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.

Тепловая защита электродвигателя

Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.

Тепловая защита электродвигателя

Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.

Что делать, если паспортные данные не известны?

Для этого случая рекомендуем использовать токовые клещи или мультиметр С266, конструкция которого также включает токоизмерительные клещи. С помощью данных приборов нужно определить ток мотора в работе, измерив его на фазах.

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.

Тепловая защита электродвигателя

Кстати, недавно мы рассмотрели принцип действия и устройство тепловых реле. с чем настоятельно рекомендуем вам ознакомиться!

В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.

Тепловая защита электродвигателя

Напоследок рекомендуем просмотреть полезное видео по теме:

Надеемся, прочитав нашу статью, вам стало понятно, как выбрать тепловое реле для двигателя по номинальному току, а также мощности самого электродвигателя. Как вы видите, условия выбора аппарата не сложные, т.к. можно без формул и сложных вычислений подобрать подходящий номинал, используя таблицу!

Советуем также прочитать:

НравитсяТепловая защита электродвигателя( 0 ) Не нравитсяТепловая защита электродвигателя( 0 )

Аварийные ситуации в работе асинхронного двигателя и методы защиты

Асинхронный двигатель является наиболее надёжным из всех электродвигателей. Он просто устроен, поэтому при правильной эксплуатации может прослужить очень долго. Но чтобы это произошло, потребуется защита от тех или иных проблем, которые могут сократить срок его службы. Если случается аварийный режим необходимо своевременно и быстро отключить электродвигатель, чтобы авария не получила разрушительного развития.

Наиболее распространёнными аварийными ситуациями и соответствующими им видами защиты являются:

  • Короткие замыкания. В такой ситуации превышение заданных величин токов в обмотках должно вызвать срабатывание защиты, которая выполнит отключение от сети.
  • Перегрузка, в результате которой температура всего движка увеличивается.
  • Проблемы с напряжением, которое либо уменьшается, либо пропадает.
  • Исчезновение напряжения на одной из фаз.

В схемах защиты используются плавкие предохранители. реле и магнитные пускатели с автоматическими выключателями. Схема может быть построена таким образом, что будет выполняться сразу несколько видов защиты асинхронного двигателя. Например, могут быть использованы автоматические выключатели с коммутациями и при перегрузках, и при коротких замыканиях. Плавкие предохранители имеют одноразовое действие и требуют вмешательства оператора для замены.

Реле и магнитные пускатели срабатывают многократно, но могут отличаться по способу восстановления исходного состояния. Для них возможен либо автоматический самовозврат, либо установка вручную. Защиту надо выбирать, основываясь на:

  • предназначении привода, в котором работает асинхронный двигатель;
  • электромеханических параметрах привода;
  • условиях окружающей среды;
  • возможности обслуживания персоналом.
  • Главными качествами защиты должна быть простота в эксплуатации и надёжность.

Любой асинхронный двигатель должен иметь защиту от коротких замыканий. При этом она должна быть спроектирована и настроена с учётом тока пуска и торможения, которые могут превышать номинальный ток почти в десять раз. Но необходимо учитывать и возможность замыканий в обмотке движка в разных местах. При таких ситуациях защитное срабатывание должно произойти при величине тока меньшей, чем при пуске асинхронного двигателя. Поскольку такие требования противоречат друг другу защиту приходится делать с задержкой отключения. Если за это время ток, который двигатель потребляет из сети, существенно увеличится, она сработает.

Требования к защите при коротких замыканиях в асинхронных двигателях заложены в ПУЭ, которые требуют следующее (показано на изображении ниже).

  • Место установки – перед зажимами движка на ответвлении к нему.
  • Надёжное отключение при коротких замыканиях на его зажимах.

Тепловая защита электродвигателя

Точки на изображении:

  • К1 – однофазное замыкание на землю в сетях с заземлением нейтрали;
  • К2 – двухфазное замыкание;
  • К3 – трёхфазное короткое замыкание.

Ток перегрузки движка надо учитывать только в тех приводах, в которых возможны нарушения нормального технологического процесса с большими внешними усилиями, приложенными к валу. При этом надо учитывать перегрузочную способность электродвигателя. Если защита от перегрузки срабатывает слишком часто, вероятнее всего то, что мощность движка не соответствует назначению. В таких случаях недопустимы ложные срабатывания, которые устраняются правильным выбором и качественной регулировкой компонентов защиты.

Короткие замыкания и защита от перегрузок

Простейшая защита от замыканий содержит только плавкие предохранители. Они применяются в диапазоне мощностей двигателей до 100 кВт. Однако при их использование возможно перегорание не всех трёх предохранителей. Поэтому движок может искусственно оказаться с одной или двумя отключенными фазными обмотками. В зависимости от назначения электропривода существуют разные критерии выбора предохранителей.

Если у привода нагрузка вентиляторного типа, для которой характерен лёгкий пуск, номинальный ток плавкой вставки выбирается не менее 40% от величины пускового тока. Этот критерий применим для металлорежущих станков, вентиляторов, насосов и т.п. у которых переходный процесс длится от двух до пяти секунд. Если время переходного процесса более длительное от десяти до двадцати секунд номинальный ток плавкой вставки должен быть не менее 50% от величины пускового тока. Этот критерий применим для приводов с валом заторможенных нагрузкой. К ним можно отнести дробилки, центрифуги, шаровые мельницы.

Если имеется группа из нескольких электродвигателей, предохранители ставятся на каждый из них и на распределительный щит. На нём в каждой фазе устанавливается предохранитель с номинальным током равным сумме номинальных токов предохранителей всех движков. Если величина пускового тока не известна, а мощность Р асинхронного двигателя менее 100 кВт, можно выбрать приблизительное значение номинального тока I предохранителя таким способом:

Для более точного срабатывания и для всего диапазона мощностей асинхронных двигателей применяются схемы защиты с реле. Такие схемы позволяют учесть токи пуска и торможения и не реагировать на них. Срабатывание реле приводит к выключению магнитного пускателя и обесточиванию двигателя. Эти так называемые «максимальные» реле в зависимости от конструкции имеют катушку, рассчитанную на токи от десятых долей Ампера до сотен Ампер, а так же контакты, отключающие ток в катушке магнитного пускателя.

Тепловая защита электродвигателя

Погрешность их срабатывания обычно не превышает десяти процентов. Возврат в исходное состояние конструктивно наиболее часто сделан вручную. Типовая схема защиты показана на изображении. РМ – обозначения максимальных реле, Л – обозначение магнитного пускателя.

Максимальные реле также применяются и для защиты от перегрузки. Но при этом в схему вводится реле времени, которое позволяет сделать настройку её без учёта пусковых токов.

Тепловая защита

Тепловое реле является альтернативным способом защиты электродвигателя с определённой инерцией срабатывания. Принцип действия основан на использовании биметаллической пластины, которая нагревается током обмоток двигателя. Деформация пластины приводит к срабатыванию контактов, необходимых для отключения движка.

Тепловая защита электродвигателя

Надёжность такой защиты зависит от подобия тепловых процессов в реле и в двигателе. Такое возможно только при достаточно длительном перерыве между включениями и выключениями движка. Условия окружающей среды для двигателя и для элементов тепловой защиты должны быть одинаковыми.

Скорость срабатывания тепловых реле тем меньше, чем больше ток, протекающий через нагревательные элементы или же саму пластину в зависимости от конструкции. При больших значениях токов в обмотках асинхронного двигателя подключение выполняется с использованием трансформаторов тока. Существуют модели магнитных пускателей со встроенными в них тепловыми реле.

Основными электрическими параметрами являются

  • номинальное напряжение. Это максимальное напряжение в сети допустимое для использования реле.
  • Номинальный ток, при котором реле работает длительно и не срабатывает при этом.

Тепловая защита не способна реагировать на токи короткого замыкания и недопустимые кратковременные перегрузки. Поэтому её надо использовать совместно хотя бы с плавкими предохранителями.

Более совершенной разновидностью защиты электродвигателя от недопустимого нагрева является схема с использованием специального датчика тепла. Такой тепловой сенсор располагается на самом движке в том или ином месте. Некоторые модели двигателей имеют встроенный биметаллический сенсор – контакт, подключаемый к защите.

Понижение напряжения и пропадание фазы

Полностью нагруженный асинхронный двигатель, работающий при пониженном напряжении, быстро нагревается. Если в нём есть встроенный тепловой сенсор, сработает тепловая защита. Если такового нет, необходима защита от понижения напряжения. Для этих целей служат реле, которые срабатывают при снижении напряжения и подают сигнал на отключение движка. На схеме ниже это РН .

Тепловая защита электродвигателя

Восстановление исходного состояния защиты обычно выполняется вручную или автоматически, но с задержкой во времени для каждого двигателя при их группе. Иначе одновременный групповой запуск после восстановления опять-таки может вызвать повторное понижение напряжения в сети и новое отключение.

Специальная защита от пропадания фазы, то есть от работы только на двух фазах ПУЭ предусматривает только в таких приводах, где возможны неприемлемые по своей тяжести последствия. Экономически целесообразно не изготовление и установка такой защиты, а ликвидация причин, приводящих к такому режиму работы.

Самыми последними техническими решениями в построении защиты электродвигателей являются автоматические выключатели с воздушным гашением дуги. Некоторые модели совмещают в себе возможности рубильника, контактора, максимального и теплового реле и выполняют соответствующие защитные функции. В таком автомате контакты размыкаются мощной взведенной пружиной. Освобождение её происходит в зависимости от типа исполнительного элемента — электромагнитного или теплового.

Источники: http://studopedia.ru/2_20958_vidi-i-apparati-zashchit-elektrodvigateley.html, http://samelectrik.ru/instrukciya-po-vyboru-teplovogo-rele-dlya-zashhity-elektrodvigatelya.html, http://podvi.ru/elektrodvigatel/zashhita-asinxronnogo-dvigatelya.html

Рейтинг
( Пока оценок нет )
Всё об электрике в доме
Добавить комментарий