Принцип работы электродвигателя постоянного тока

Устройство и принцип работы электродвигателя постоянного тока

Не всякий электрический двигатель можно однозначно назвать способным работать от постоянного тока. Касается коллекторного типа. На нем базируются устройство, принцип работы электродвигателя постоянного тока. Статор состоит из набора обмоток, каждая работает только на ограниченной части дуги хода вала. В противном случае реализовать концепцию невозможно.

Работа коллекторного двигателя

Коллекторный двигателей используется повсеместно бытовой техникой. 90% домашних применений приходится на этот сегмент. Двигатели стиральных машин, пылесосов, электрического инструмента. Исключением, назовем холодильники, вентиляторы, ветродувки, некоторые вытяжки. Вызвано требованиями бесшумности. Каждый, кто слышал, как ездит маленькая машинка от батарейки, понимает. В ночное время слышно каждый шорох, коллекторный двигатель навел бы шороху. Попробуйте включить на одну-две секунды болгарку в шесть часов утра – поймете.

Согласно законодательству в темное время суток уровень звукового давления не превышает 30 дБ. В противном случае техника помешает спокойному сну. Шум вызван трением щеток о коллектор, ротор двигателя сравнительно тяжелый, малейшая несоосность отдается в подшипниках. Люфт есть, массивнее движущаяся часть, акустический эффект заметнее. У коллекторных двигателей предостаточно недостатков, зато могут работать от постоянного тока. Чтобы уменьшить габариты, снижают число катушек. Для однозначного задания направления вращения необходимо минимум три полюса, причем никогда не работают параллельно.

Принцип работы электродвигателя постоянного тока

Двигатель постоянного тока

У коллекторного двигателя бытовой техники великое количество полюсов ротора. Ниже упрощенный рисунок для постоянного тока. Коллекторный двигатель работает в схожем режиме, магнитов статора больше, все электрические. Питание ведется переменным напряжением 220 вольт. Подошли к главной тайне! Нет разницы, питать коллекторный двигатель переменным, постоянным током. С точки зрения обывателя. Существуют некоторые особенности:

  1. При питании постоянным током КПД повышается. Подводимая мощность пропорционально снижена, достигая большей эффективности использования. Обмотка статора снабжена не двумя — тремя выводами. При питании постоянным током используется часть витков. Переменный течет через всю катушку статора.
  2. При постоянных полях исчезает эффект перемагничивания. Резко снижает нагрев электротехнической стали магнитопроводов двигателя постоянного тока. Отражается низкими требованиями к изготовлению несущей основы ротора и статора. Можно не разделять магнитопроводы на пластины с изоляцией лаком. Как бы то ни было, большинство коллекторных двигателей постоянного тока одновременно годятся и для работы с переменным. Магнитопроводы составлены пластинами электротехнической стали.
  3. Косвенным плюсом является более высокая стабильность оборотов. Для регуляции скорости вращения на постоянном токе используется изменение амплитуды напряжения, на переменном — при помощи тиристорного ключа отсекается часть синусоиды по линии питания. Последний вариант используется стиральными машинами.
  4. Реверс на переменном токе ведут перекоммутацией обмоток. Изменением направления включения друг относительно друга. Процедуры в стиральной машине выполняют специальные реле. В двигателях постоянного тока полюс статора заменен железным (неодимовым) магнитом. Хватает сменить полярность питания для получения реверса. Операцию можно выполнять при помощи реле или контактора. Если обмотки питаются энергией электричества, для изменения направления вращения вала применяется перекоммутация.

В коллекторном двигателе бытовой техники статор соединяется последовательно ротору. Для передачи энергии на вал используется токосъемник в виде барабана, разделенного секциями. Электродами послужат графитовые щетки с прижимными пружинами. На корпусе выводы статора и ротора разграничены, обеспечивая возможности реализации функции реверса. Среди контактов могут быть вспомогательные: три вывода датчика Холла (два тахометра), окончания термопредохранителя.

По мере кручения вала щетки постепенно переключаются на следующую секцию, полюс ротора сдвигается. Статор остается на прежнем месте. Обратите внимание, полярность меняется с удвоенной частотой сети (50 Гц), характер взаимодействия остается прежним. Одинаковые полюсы отталкиваются, разнородные притягиваются. Путем особого распределения обмотки, коммутации с коллектором обеспечивается нужное направление вращения. Проявляется независимость двигателя от типа питающего напряжения (постоянного или переменного). Некоторые особенности коллекторного оборудования, присущие только данному типу устройств читайте ниже.

Читайте также: Прокладка кабеля в траншее

По мере движения щеток по барабану возникает искра

Паразитный эффект часто применяется на пользу, недостатки в виде помех послужат оценке скорости вращения вала. При увеличении нагрузки на вал обороты снижаются. Падает величина паразитной противо-ЭДС, эффект приводит к уменьшению уровня искрения. Специальная схема отслеживает фактор, увеличивая напряжение питания. Скорость оборотов восстанавливается. Подобные схемы найдем в кухонных комбайнах; в стиральных машинах для контроля вращения применяются специальные датчики (тахометр).

Принцип работы электродвигателя постоянного тока

Для гашения искры применяются варисторы

Величина ЭДС вырастает до недопустимого размера, сопротивление защиты в десятки тысяч раз уменьшается, лишний ток закорачивается корпусом. Варисторы используются парно. Объединяют обе щетки через корпус коллекторного двигателя. Вилки пылесосы зачастую лишены клеммы заземление, успешно снабжаются варисторной защитой. Искра замыкается стальным корпусом, ввиду больших размеров, массы разогрев отсутствует. Смертельно опасно браться одной рукой за коллекторный двигатель с такими изысками, другой — хватать заземленные металлические конструкции (пожарные лестницы; водопроводные, канализационные, газовые трубы; шины громоотводов; оплетки антенных кабелей).

Съемные щечки на корпусе

Корпус электроинструмента снабжен съемными щечками, щетки меняются в течение считаных минут. Уберегает от необходимости разбирать прибор для технического обслуживания. Признаком износа щеток выступает сильное искрение. Оборудование поизносилось. Новые щетки при притирании сильно искрят. В случае износа наблюдается падение мощности. Дрель перестает вращать сверло, останавливается барабан стиральной машины при номинальной массе загруженного белья. Не всегда удается достать оригинальные щетки, комплектующие можно подточить до необходимых размеров шлифовальным инструментом.

Принцип работы электродвигателя постоянного тока

Искрение оборотов, срыв

Искрение, срыв оборотов наблюдаются при загрязнении барабана. Ротор вынимается, проводится чистка подходящим средством (спиртом).

Устройство электродвигателя постоянного тока не отличается от моделей, работающих под переменным напряжением. Вышесказанное касается любого типа оборудования.

Работа электродвигателя постоянного тока

Под токосъемником простейшего двигателя две секции. Выродился барабан коллектора. Каждая контактная ламель (пластинка на валу) занимает половину оборота. Одна щетка снабжается положительным потенциалом, вторая — отрицательным, сообразно меняется направление магнитного поля полюсов. Активными в каждый момент времени являются два (в описанной выше конструкции). Статора может формироваться постоянным электрическим полем, либо металлическим магнитом. Последнее применяется детскими машинками.

Читайте также: Как правильно сделать электропроводку в квартире

Как работает электродвигатель постоянного тока. Допустим, в начальный момент времени обмотки расположены так, как показано на рисунке. В нашем примере полюсов уже не два, как обсуждали выше, — три. Минимальное число для стабильного запуска электрического двигателя постоянного тока в нужном направлении. Обмотки соединены схемой звезды, у каждой пары одна общая точка. Напряженность поля формирует два полюса отрицательных, один положительный. Постоянный магнит стоит, как показано рисунком.

Принцип работы электродвигателя постоянного тока

Упрощенный рисунок случая постоянного тока

Каждую треть оборота происходит перераспределение поля так, что полюса сдвигаются согласно изменению напряжения питания на ламелях. На второй эпюре видим: номера обмоток сдвинулись, картина в пространстве осталась. Залог стабильности: один полюс притягивается к постоянному магниту, второй отталкивается. Если нужно получить реверс, меняется полярность подключения батарейки (аккумулятора). В результате получается два положительных полюса, один отрицательный. Вал станет двигаться против часовой стрелки.

Полагаем, принцип действия электродвигателя постоянного тока теперь понятен. Добавим, сегодня распространены двигатели вентильного типа. Многие задумались заставить поля чередоваться на статоре, ротор представлял бы постоянный магнит. В первом приближении двигатель вентильного типа. Постоянный ток подается на нужные обмотки статора через коммутируемые ключи-тиристоры. В результате создается нужное распределение поля.

Преимущества схемы в снижении количества трущихся частей, являющихся причиной необходимости обслуживания, ремонта. Тиристорный блок управления достаточно сложный. Допускается организовать коммутацию при помощи ламелей. Одновременно конструкция послужит грубым датчиком положения вала (плюс минус расстояние между контактными площадками оси вала). Вентильные двигатели не новы. Широко применяются специфическими отраслями. Помогают точно выдержать частоту вращения. В быту вентильные двигатели найти сложно. Некое подобие можно лицезреть в стиральной машине. Речь о помпе слива воды (ротор магнитный, только ток переменный).

Технические характеристики электродвигателей постоянного тока лучше, нежели при питании переменным током. Класс устройств широко применяется. Чаще электродвигатели постоянного тока используются при питании батареями различного рода. Когда нет выбора. Преимущества схемы питания позволят аккумуляторам дольше продержаться.

Обмотки статора, ротора включают последовательно, параллельно. Последнее применяется при нагруженном в исходном состоянии валу. Наблюдается резкое повышение оборотов, может привести к негативным последствиям, если ротор слишком легко идет. Упоминали о подобных тонкостях в теме конструирования двигателей своими руками.

Принцип действия электродвигателя постоянного тока

Электрический двигатель – неоценимое изобретение человека. Благодаря этому устройству наша цивилизация за последние сотни лет ушла далеко вперёд. Это настолько важно, что принцип работы электродвигателя изучают ещё со школьной скамьи. Круговое вращение электроприводного вала легко трансформируется во все остальные виды движения. Поэтому любой станок, созданный для облегчения труда и сокращения времени на изготовление продукции, можно приспособить под выполнение множества задач. Каков же принцип действия электродвигателя, как он работает и каково его устройство – обо всём этом понятным языком рассказывается в представленной статье.

Как работает двигатель постоянного тока

Принцип работы электродвигателя постоянного тока

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта). При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.

Принцип действия современных электродвигателей

Принцип работы электродвигателя постоянного тока

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Принцип работы электродвигателя постоянного тока

Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.

Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

Электродвигатель постоянного тока

Электродвигатель постоянного тока был изобретен раньше других типов машин, преобразующих электрическую энергию в механическую. Несмотря на то, что позднее самое широкое распространение получили двигатели переменного тока, существуют сферы применения, в которых нет альтернативы электродвигателям постоянного тока.

Принцип работы электродвигателя постоянного тока

Электродвигатель постоянного и переменного тока

История изобретения

Принцип работы электродвигателя постоянного тока

Для того чтобы понять принцип работы электрических двигателей постоянного тока (ДПТ) мы обратимся к истории его создания. Итак, первые опытные доказательства того, что электрическую энергию можно превращать в механическую, продемонстрировал Майкл Фарадей. В 1821 году он провел опыт с проводником, опущенным в сосуд, наполненный ртутью, на дне которого располагался постоянный магнит. После подачи электричества на проводник, тот начинал вращаться вокруг магнита, демонстрируя свою реакцию на имеющееся в сосуде магнитное поле. Эксперимент Фарадея не нашел практического применения, но доказал возможность создания электрических машин, и дал старт развитию электромеханики.

Первый электрический двигатель постоянного тока, в основу которого был положен принцип вращения подвижной части (ротора) был создан русским физиком-механиком Борисом Семеновичем Якоби в 1834 году. Это устройство работало следующим образом:

  1. После подачи питания вокруг якоря-ротора создавалось электромагнитное поле, чьи полюса располагались напротив друг друга по правилу буравчика и отклонялись от одноименных полюсов индуктора.
  2. Перед тем, как электромагнитное поле якоря устанавливалось на максимальном приближении к разноименным полюсам индуктора, специальный коммутатор отключал питание, и якорь продолжал вращаться по инерции.
  3. После того, как якорь выходил из-под полюсов индуктора, коммутатор включал питание с обратной полярностью и появившееся «перевернутое» электромагнитное поле отталкивалось от полюсов индуктора, делая полный оборот якоря.

Принцип работы электродвигателя постоянного тока

1-4 — металлические кольца, 5 — скользящий контакт, 6 — батарея

Описанный принцип использовался в двигателе, который Якоби установил на лодке с 12 пассажирами в 1839 году. Судно двигалось рывками со скоростью в 3 км/ч против течения (по другим данным — 4.5 км/ч), но успешно пересекло реку и высадило пассажиров на берег. В качестве источника питания использовалась батарея с 320 гальваническими элементами, а движение осуществлялось с помощью лопастных колес.

Дальнейшее изучение вопроса привело исследователей к разрешению массы вопросов, касаемо того, какие источники питания лучше использовать, как улучшить его рабочие характеристики и оптимизировать габариты.

В 1886 году Фрэнком Джулиан Спрэгом впервые был сконструирован электродвигатель постоянного тока, близкий по конструкции тем, которые применяются в наши дни. В нем был реализован принцип самовозбуждения и принцип обратимости электрической машины. К этому моменту все двигатели данного типа перешли на питание от более подходящего источника – генератора постоянного тока.

Принцип работы электродвигателя постоянного тока

Щёточно-коллекторный узел обеспечивает электрическое соединение цепи ротора с цепями, расположенными в неподвижной части машины

Устройство и принцип работы

В современных ДПТ используется все тот же принцип взаимодействия заряженного проводника с магнитным полем. С усовершенствованием технологий устройство лишь дополняется некоторыми элементами, улучшающими производительность. К примеру, в наши дни постоянные магниты используются лишь в двигателях низкой мощности, поскольку в крупных аппаратах они занимали бы слишком много места.

Основной принцип

Первоначальные прототипы двигателей данного типа были заметно проще современных аппаратов. Их примитивное устройство включало в себя лишь статор из двух магнитов и якорь с обмотками, на которые подавался ток. Изучив принцип взаимодействия магнитных полей, конструкторы определили следующий алгоритм работы двигателя:

  1. Подача питания создает на обмотках якоря электромагнитное поле.
  2. Полюса электромагнитного поля отталкиваются от одноименных полюсов поля постоянного магнита.
  3. Якорь вместе с валом, на котором он закреплен, вращается в соответствии с отталкивающимся полем обмотки.

Данный алгоритм отлично работал в теории, однако на практике перед создателями первых двигателей вставали характерные проблемы, препятствовавшие функционированию машины:

  • Мертвое положение, из которого двигатель невозможно запустить – когда полюса точно сориентированы друг перед другом.
  • Невозможность пуска из-за сильного сопротивления или слабого отталкивания полюсов.
  • Ротор останавливается после совершения одного оборота. Это связано с тем, что после прохождения половины окружности притягивание магнита не разгоняло, а тормозило вращение ротора.

Решение первой проблемы было найдено довольно быстро – для этого было предложено использовать более двух магнитов. Позднее в устройство двигателя стали включать несколько обмоток и коллекторно-щеточный узел, который подавал питание только на одну пару обмоток в определенный момент времени.

Коллекторно-щеточная система подачи тока решает и проблему торможения ротора – переключение полярности происходит до того момента, когда вращение ротора начинает замедляться. Это значит, что во время одного оборота двигателя происходит как минимум два переключения полярности.

Проблема слабых пусковых токов рассматривается ниже в отдельном разделе.

Конструкция

Итак, постоянный магнит закрепляется на корпусе двигателя, образуя вместе с ним статор, внутри которого располагается ротор. После подачи питания на обмотке якоря возникает электромагнитное поле, вступающее во взаимодействие с магнитным полем статора, это приводит к вращению ротора, жестко посаженного на вал. Для передачи электрического тока от источника к якорю двигатель оснащается коллекторно-щеточным узлом, состоящим из:

  1. Коллектора. Он представляет собой токосъемное кольцо из нескольких секций, разделенных диэлектрическим материалом, подключается к обмоткам якоря и крепится непосредственно на валу двигателя.
  2. Графитовых щеток. Они замыкают цепь между коллектором и источником питания с помощью щеток, которые прижимаются к контактным площадкам коллектора прижимными пружинами.

Обмотки якоря одними концами соединяются между собой, а другими – с секциями коллектора, образуя таким образом цепь, по которой ток идет по следующему маршруту: входная щетка –> обмотка ротора -> выходная щетка.

Приведенная принципиальная схема (рис. 3) демонстрирует принцип работы примитивного электродвигателя постоянного тока с коллектором из двух секций:

  1. В этом примере мы будет считать стартовым положением ротора то, которое нарисовано на схеме. Итак, после подачи питания на нижнюю щетку, помеченную знаком «+», ток протекает по обмотке и создает вокруг нее электромагнитное поле.
  2. По правилу буравчика в левой нижней части формируется северный полюс якоря, а на правой верхней – южный. Располагаясь вблизи одноименных полюсов статора, они начинают отталкиваться, приводя тем самым ротор в движение, которое продолжается до тех пор, пока противоположные полюса не окажутся на минимальном друг от друга расстоянии, то есть придут в окончательное положение (рис. 1).
  3. Конструкция коллектора на данном этапе приведет к переключению полярности на обмотках якоря. В результате этого полюса магнитных полей снова окажутся на близком расстоянии и начнут отталкиваться.
  4. Ротор совершает полный оборот, и коллектор снова меняет полярность, продолжая его движение.

Принцип работы электродвигателя постоянного тока

Детали электродвигателя постоянного тока

Здесь, как уже было отмечено, продемонстрирован принцип работы примитивного прототипа. В настоящих двигателях используется более двух магнитов, а коллектор состоит из большего числа контактных площадок, благодаря чему обеспечивается плавное вращение.

В высокомощных двигателях использование постоянных магнитов не представляется возможным из-за их большого размера. Альтернативой для них служит система из нескольких токопроводящих стержней, на каждой из которых имеется своя обмотка, подключаемая к питающим шинам. Одноименные полюса включаются в сеть последовательно. На корпусе может присутствовать от 1 до 4 пар полюсов, а их количеству должно соответствовать число токосъемных щеток на коллекторе.

Электродвигатели, рассчитанные на большую мощность, обладают рядом функциональных преимуществ перед более «легкими» аналогами. К примеру, здешнее устройство токосъемных щеток поворачивает их на определенный угол относительно вала для компенсации торможения вала, названного «реакцией якоря».

Пусковые токи

Постепенное оснащение ротора двигателя дополнительными элементами, обеспечивающими его бесперебойную работу и исключающими секторальное торможение, возникает проблема его запуска. Но все это увеличивает вес ротора – с учетом сопротивления вала столкнуть его с места становится сложнее. Первым решением этой проблемы, приходящим в голову, может быть увеличение силы тока, подаваемой на старте, но это может привести к неприятным последствиям:

  • защитный автомат линии не выдержит тока и отключится;
  • провода обмотки сгорят от перегрузки;
  • секторы переключения на коллекторе приварятся от перегрева.

Поэтому такое решение можно назвать скорее рискованной полумерой.

Вообще, данная проблема является главным недостатком электродвигателей постоянного тока, но включает в себя основное их преимущество, благодаря которому они незаменимы в некоторых областях. Преимущество это заключается в прямой передаче момента вращения сразу же после пуска – вал (если тронется с места) будет крутиться с любой нагрузкой. Двигатели переменного тока на такое не способны.

Решить эту проблему полностью до сих пор не удалось. На сегодняшний день для пуска таких двигателей используется автомат-стартер, чей принцип работы схож с автомобильной коробкой передач:

  1. Сначала ток постепенно поднимается до пускового значения.
  2. После «сдвига» с места значение тока резко падает и снова плавно поднимается «подгоняя вращение вала».
  3. После подъема до предельного значения сила тока снова снижается и «подгоняется».

Данный цикл повторяется 3-5 раз (рис. 4) и решает необходимость старта двигателя без возникновения критических нагрузок в сети. Фактически, «плавный» запуск по-прежнему отсутствует, однако оборудование работает безопасно, а главное достоинство электродвигателя постоянного тока – крутящий момент – сохраняется.

Схемы подключения

Подключение ДПТ выполняется несколько сложнее, в сравнении с двигателями со спецификацией на переменный ток.

У двигателей высокой и средней мощности, как правило, есть специальные контакты обмотки возбуждения (ОВ) и якоря, вынесенные в клеммную коробку. Чаще всего на якорь подают выходное напряжение источника, а на ОВ – ток, отрегулированный, как правило, реостатом. Скорость вращения двигателя напрямую зависит от силы тока, поданного на обмотку возбуждения.

Есть три основные схемы включения якоря и обмотки возбуждения электродвигателей постоянного тока:

  1. Последовательное возбуждение используется в моторах, от которых требуется большая сила тока на старте (электрический транспорт, прокатное оборудование и т.п.). Данная схема предусматривает последовательное подключение ОВ и якоря к источнику. После подачи напряжения по обмоткам якоря и ОВ проходят токи одинаковой величины.Следует учитывать, что снижение нагрузки на вал даже на четверть при последовательном возбуждении приведет к резкому повышению оборотов, что может привести к поломке двигателя, поэтому эта схема и используется в условиях постоянной нагрузки.
  2. Параллельное возбуждение применяется в моторах, обеспечивающих работу станкового, вентиляторного и прочего оборудования, которое в момент пуска не оказывает высокую нагрузку на вал. В этой схеме для возбуждения ОВ используется независимая обмотка, регулируемая, чаще всего, реостатом.
  3. Независимое возбуждение очень схоже с параллельным, но в данном случае для подачи питания ОВ используется независимый источник, что исключает появление электрической связи между якорем и обмоткой возбуждения.

В современных электрических двигателях постоянного тока могут применяться смешанные схемы, основанные на базе трех описанных.

Регулировка скорости вращения

Способ регулирования оборотов ДПТ зависит от схемы его подключения:

  1. В моторах с параллельным возбуждением снижение оборотов относительно номинала можно производить изменяя напряжение якоря, а повышение – ослабляя поток возбуждения. Для увеличения оборотов (не более чем в 4 раза относительно номинальной величины) в цепь ОВ добавляется реостат.
  2. При последовательном возбуждении регулировка легко осуществляется переменным сопротивлением в цепи якоря. Правда этот метод подходит только для снижения оборотов и лишь в соотношениях 1:3 или 1:2 (кроме того, это приводит к большим потерям в реостате). Повышение осуществляется с помощью регулировочного реостата в цепи ОВ.

Данные схемы редко применяются в современном высокотехнологичном оборудовании, поскольку обладают узким диапазоном регулировки и другими недостатками. В наши дни для этих целей все чаще создают электронные схемы управления.

Реверсирование

Для того чтобы реверсировать (обратить) вращение двигателя постоянного тока необходимо:

  • при последовательном возбуждении – просто изменить полярность входных контактов;
  • при смешанном и параллельном возбуждении – необходимо менять направление тока в обмотке якоря; разрыв ОВ может привести к критическому повышению нагнетаемой электродвижущей силы и пробою изоляции проводов.

Сфера применения

Как вы уже поняли, использование электродвигателей постоянного тока целесообразно в условиях, когда постоянное беспрерывное подключение к сети неосуществимо. Хорошим примером здесь может служить автомобильный стартер, толкающий двигатель внутреннего сгорания «с места», или детские игрушки с моторчиком. В данных случаях для запуска двигателя используются аккумуляторные батареи. В промышленных целях ДПТ применяются на прокатных станах.

Основная же сфера применения ДПТ – электрический транспорт. Пароходы, электровозы, трамваи, троллейбусы и другие аналогичные имеют очень большое пусковое сопротивление, преодоление которого возможно только с помощью двигателей постоянного тока с их мягкими характеристиками и широкими пределами регулировки вращения. С учетом стремительного развития и популяризации экологических транспортных технологий, сфера применения ДПТ лишь увеличивается.

Принцип работы электродвигателя постоянного тока

Самый простой щёточно-коллекторный узел

Достоинства и недостатки

Резюмируя все вышесказанное, можно описать характерные для электродвигателей постоянного тока достоинства и недостатки относительно их аналогов, рассчитанных на работу от переменного тока.

  • ДПТ незаменимы в ситуациях, когда необходим сильный пусковой момент;
  • скорость вращения якоря легко регулируется;
  • двигатель постоянного тока является универсальной электрической машиной, то есть может применяться в качестве генератора.
  • ДПТ имеют высокую производственную стоимость;
  • использование щеточно-коллекторного узла приводит к необходимости частого техобслуживания и ремонта;
  • для работы нужен источник постоянного тока или выпрямители.

Электродвигатели постоянного тока, безусловно, проигрывают своим «переменным» сородичам по стоимости и надежности, однако используются и будут использоваться, поскольку плюсы от их использования в определенных сферах категорические перечеркивают все минусы.

Поделиться с друзьями:

Источники: http://vashtehnik.ru/elektrika/ustrojstvo-i-princip-raboty-elektrodvigatelya-postoyannogo-toka.html, http://ukrlot.com/princip_deystviya_elektrodvigatelya.html, http://tokidet.ru/elektrooborudovanie/elektrodvigateli/ustroystvo-motora-postoyannogo-toka.html

Рейтинг
( Пока оценок нет )
Всё об электрике в доме
Добавить комментарий