Принцип действия электродвигателя

Принцип работы электродвигателя. Принцип работы электродвигателя переменного тока. Физика, 9 класс

Сегодня представить себе человеческую цивилизацию и высокотехнологическое общество без электричества невозможно. Одним из основных аппаратов, которые обеспечивают работу электрических приборов, является двигатель. Эта машина нашла самое широкое распространение: от промышленности (вентиляторы, дробилки, компрессоры) до бытового использования (стиральные машины, дрели и прочее). Но в чем состоит принцип работы электродвигателя?

Принцип действия электродвигателя

Назначение

Принцип работы электродвигателя и его основные цели заключаются в передаче рабочим органам необходимой для совершения технологических процессов механической энергии. Сам двигатель вырабатывает ее за счет потребляемой из сети электроэнергии. По сути говоря, принцип работы электродвигателя заключается в преобразовании электрический энергии в механическую. Количество вырабатываемой им механической энергии за одну единицу времени называется мощностью.

Принцип действия электродвигателя

Виды двигателей

В зависимости от характеристик питающей сети можно выделить два основных типа двигателя: на постоянном и на переменном токе. Наиболее распространенными машинами постоянного тока являются моторы с последовательным, независимым и смешанным возбуждением. Примерами двигателей на переменном токе могут выступить синхронные и асинхронные машины. Несмотря на кажущееся разнообразие, устройство и принцип работы электродвигателя любого назначения основаны на взаимодействии проводника с током и магнитным полем либо же постоянного магнита (ферромагнитного объекта) с магнитным полем.

Принцип действия электродвигателя

Рамка с током – прообраз двигателя

Основным моментом в таком вопросе, как принцип работы электродвигателя, можно назвать появление крутящего момента. Рассмотреть такое явление можно на примере рамки с током, которая состоит из двух проводников и магнита. К проводникам ток подводится через контактные кольца, которые закреплены на оси вращающейся рамки. В соответствии со знаменитым правилом левой руки на рамку будут действовать силы, которые создадут крутящий момент относительно оси. Она под действием этой суммарной силы будет вращаться по направлению против часовой стрелки. Известно, что этот момент вращения прямо пропорционален магнитной индукции (B), силе тока (I), площади рамки (S) и зависит от угла между линиями поля и осью последней. Однако под действием момента, изменяющегося по своему направлению, рамка будет совершать колебательные движения. Что же предпринять для образования постоянного направления? Тут есть два варианта:

  • менять направление электрического тока в рамке и положение проводников относительно полюсов магнита;
  • менять направление самого поля, притом что рамка вращается в неизменную сторону.

Первый вариант используется для двигателей постоянного тока. А второй — это принцип работы электродвигателя переменного тока.

Принцип действия электродвигателя

Изменение направления тока относительно магнита

Для того чтобы изменить направление движения заряженных частиц в проводнике рамки с током, необходимо устройство, которое бы задавало это направление в зависимости от расположения проводников. Такая конструкция реализована благодаря использованию скользящих контактов, которые служат для подвода к рамке тока. При замене одним кольцом двух, когда рамка поворачивается на половину оборота, направление тока меняется на противоположное, а крутящий момент его сохраняет. Важно учесть, что одно кольцо собрано из двух половинок, которые изолированы друг от друга.

Принцип действия электродвигателя

Конструкция машины постоянного тока

Вышеприведенный пример – это принцип работы электродвигателя постоянного тока. Реальная машина, естественно, имеет более сложную конструкцию, где используются десятки рамок, образующих обмотку якоря. Проводники этой обмотки размещены в специальных пазах в цилиндрическом ферромагнитном сердечнике. Концы обмоток присоединены к изолированных кольцам, которые образуют коллектор. Обмотка, коллектор и сердечник – это якорь, вращающийся в подшипниках на корпусе самого двигателя. Магнитное поле возбуждения создается полюсами постоянных магнитов, которые расположены в корпусе. Обмотка подключается к питающей сети, и ее можно включать как независимо от цепи якоря, так и последовательно. В первом случае электродвигатель будет иметь независимое возбуждение, во втором – последовательное. Также существует конструкция со смешанным возбуждением, когда используются сразу два типа подключения обмотки.

Принцип действия электродвигателя

Синхронная машина

Принцип работы синхронного электродвигателя заключается в необходимости создания вращающегося магнитного поля. Затем нужно поместить в это поле обтекаемые неизменным в направлении током проводники. Принцип работы синхронного электродвигателя, который получил весьма широкое распространение в промышленности, основан на вышеприведенном примере с рамкой с током. Вращающееся поле, создаваемое магнитом, образуется при помощи системы обмоток, которые подключены к питающей сети. Обычно используют трехфазные обмотки, однако принцип работы однофазного электродвигателя переменного тока не будет отличаться от трехфазного, разве что количеством самих фаз, что несущественно при рассмотрении конструктивных особенностей. Обмотки укладывают в пазы статора с некоторым сдвигом по окружности. Это делается для создания вращающегося магнитного поля в образованном воздушном промежутке.

Синхронизм

Очень важным моментом является синхронная работа электродвигателя вышеприведенной конструкции. При взаимодействии магнитного поля с током в обмотке ротора образуется сам процесс вращения двигателя, который будет синхронным по отношению к вращению магнитного поля, образованному на статоре. Синхронизм будет сохраняться до достижения максимального момента, который вызван сопротивлением. При увеличении нагрузки машина может выйти из синхронизма.

Принцип действия электродвигателя

Асинхронный двигатель

Принцип работы электродвигателя асинхронного заключается в наличии вращающегося магнитного поля и замкнутых рамок (контуров) на роторе – крутящейся части. Магнитное поле образуется так же, как и у синхронного двигателя — при помощи расположенных в пазах статора обмоток, которые подключены к сети переменного напряжения. Обмотки ротора состоят из десятка замкнутых контуров-рамок и имеют обычно два типа исполнения: фазное и короткозамкнутое. Принцип работы электродвигателя переменного тока в обоих вариантах одинаковый, меняется только конструктивное исполнение. В случае короткозамкнутого ротора (также известного под названием «беличья клетка») обмотка заливается расплавленным алюминием в пазы. При изготовлении обмотки фазной концы каждой фазы выводят наружу с помощью скользящих колец-контактов, так как это позволит включить в цепь добавочные резисторы, которые необходимы для регулирования частоты вращения двигателя.

Тяговая машина

Принцип работы тягового электродвигателя аналогичен мотору на постоянном токе. От питающей сети ток подают на повышающий трансформатор. Далее трехфазный переменный ток передается на специальные тяговые подстанции. Там находится выпрямитель. Он преобразует переменный ток в постоянный. По схеме он проводится одной своей полярностью к контактным проводам, второй – непосредственно к рельсам. Необходимо помнить, что многие тяговые механизмы работают на частоте, отличной от установившейся промышленной (50 Гц). Поэтому используют частотник для электродвигателя, принцип работы которого заключается в преобразовании частот и контролировании данной характеристики.

По поднятому пантографу напряжение подается в камеры, где находятся пусковые реостаты и контакторы. С помощью контроллеров реостаты подключаются к тяговым электродвигателям, которые расположены на осях тележек. От них ток поступает через шины на рельсы, а затем возвращается к тяговой подстанции, таким образом замыкая электрическую цепь.

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

Принцип действия электродвигателя

Каково быть девственницей в 30 лет? Каково, интересно, женщинам, которые не занимались сексом практически до достижения среднего возраста.

Принцип действия электродвигателя

Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

Принцип действия электродвигателя

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Принцип действия электродвигателя

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

Принцип действия электродвигателя

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Электродвигатель. Устройство и принцип действия электродвигателя.

Электродвигатель преобразует электроэнергию в энергию механического движения. Так же как и электрический генератор электродвигатель состоит обычно из статора и ротора, относясь к вращающимся электрическим машинам Выпускаются однако, двигатели у которых движущаяся часть совершает линейное (обычно прямолинейное движение (линейные двигатели).

Самым распространенным видом электродвигателей является трехфазный короткозамкнутый асинхронный двигатель принцип устройства которого представлен на рис. 1, роторная обмотка этого двигателя представляет собой систему массивных медных или алюминиевых стержней, размещенных параллельно друг другу в пазах ротора концы которых соединены между собой короткозамкнутыми кольцами.

Рис. 1. Принцип устройства короткозамкнутого асинхронного двигателя.
1- статор, 2 – ротор, 3 — вал, 4 — корпус

В случае применения алюминия вся обмотка (беличья клетка) обычно формируется путем литья под давлением. Вращающееся магнитное поле статора индуцирует в обмотке ротора ток, взаимодействие которого с магнитным полем статора приводит ротор во вращение. Скорость вращения ротора при этом всегда меньше чем магнитного поля статора и ее относительную разность со скоростью вращения магнитного поля статора (с синхронией скоростью) называют скольжением. Эта величина зависит от нагрузки на валу двигателя и составляет при полной нагрузке обычно 3… 5%. Для ступенчатого регулирования скорости может использоваться статорная обмотка с переключаемым числом полюсов по такому принципу могут выполняться, например, двух трех и четырехскоростные асинхронные двигатели. Для плавного регулирования скорости обычно осуществляется питание двигателя через регулируемый преобразователь частоты.

Для главного регулирования скорости асинхронного двигателя ниже номинальной ранее вместо короткозамкнутых двигателе использовались двигатели с фазным ротором, у которых роторная обмотка имеет такое же трехфазное исполнение как и статорная. Такая обмотка соединяется через контактные кольца, расположенные на валу двигателя с регулировочным реостатом где часть энергии потребляемой двигателем, превращается в тепло. Регулирование происходит, следовательно, за счет снижения КПД двигателя и в настоящее время применяется редко.

Короткозамкнутые асинхронные двигатели характеризуются своей компактностью и высокой надежностью, а также намного большим сроком службы, чем двигатели внутреннего сгорания. По размерам они обычно меньше и по массе легче, чем двигатели внутреннего сгорания той же мощности. Они могут изготовляться в очень большом диапазоне номинальных мощностей от нескольких ватт до нескольких десятков мегаватт. Двигатели малой мощности (до нескольких сотен ватт могут быть и однофазными.

Синхронные двигатели устроены так же, как и синхронные генераторы. При неизменной сетевой частоте они вращаются с постоянной скоростью не зависимо от нагрузки. Их преимуществом перед асинхронными двигателями считается то, что они не потребляют из сети реактивную энергию, а могут отдавать ее в сеть покрывая этим потребление реактивной энергии другими электроприемниками. Синхронные двигатели не подходят для частых пусков и применяются, главным образом, при относительно стабильной механической нагрузке и тогда, когда требуется постоянная скорость вращения.

Двигатели постоянного тока используются при необходимости плавного регулирования скорости. Это достигается путем изменения тока якоря и/или возбуждения при помощи полупроводниковых устройств (раньше — с помощью регулировочных реостатов) или путем изменения напряжения питания. Так как в настоящее время легко и без существенного изменения КПД (при помощи преобразователей частоты) осуществляется и плавное регулирование скорости двигателей переменного тока, то двигатели постоянного тока, из-за их большей стоимости, больших размеров и дополнительных потерь, возникающих при регулировании, стали применяться значительно реже, чем раньше.
Шаговые двигатели приводят в движение при помощи импульсов напряжения. При каждом импульсе ротор двигателя поворачивается на определенный угол (например, на несколько градусов). Такие двигатели используются в тихоходных механизмах, требующих обычно еще точного позиционирования. Могут изготовляться, например, двигатели, совершающие один обо рот за сутки или даже за год.

Линейные двигатели используются для линейного движения, когда преобразование вращающегося движения в линейное при помощи механических передач или других устройств невозможно или неприемлемо. Наиболее часто применяются асинхронные линейные двигатели, но существуют также синхронные и шаговые линейные двигатели и даже двигатели постоянного тока.

Основными преимуществами электрических двигателей перед двигателями внутреннего сгорания могут считаться
— меньшие размеры, меньшая масса и меньшая стоимость,
— намного более высокий КПД (обычно 90. 95%),
— лучшая регулируемость (обычно с сохранением высокого КПД),
— высокая надежность и долгий срок службы,
— меньший шум и меньшая вибрация при работе,
— быстрый и беспроблемный (при необходимости — плавный) пуск,
— намного более простая эксплуатация,
— отсутствие потребления топлива и, как результат, отсутствие выбросов продуктов сгорания в окружающую среду,
— легкое присоединение к любым рабочим машинам и механизмам.
Применение электродвигателей может оказаться проблемным в случае, когда они должны размещаться на переносных и передвижных устройствах или на транспортных средствах. Для электропитания в таких случаях могут применяться, в зависимости от дальности и характера передвижения,
— гибкие кабели,
— контактные провода или контактные шины,
— размещаемые на передвижных средствах источники питания (аккумуляторы, топливные элементы, двигатель-генераторы и т. п.).

Во многих случаях эти способы питания ограничивают маневренность или дальность пробега транспортных средств (особенно автомобилей) или других передвижных машин в такой степени что применение двигателей внутреннего сгорания остается более рациональным. Первый электродвигатель был не электромагнитным, а электростатическим и его изготовил в 1748 году издатель и общественный деятель города Филадельфия (Philadelphia, США) Бенджамин Франклин (Benjamin Franklin, 1706-1790). Ротор этого двигателя представлял собой зубчатый диск, на зубья которого действовали импульсные силы притяжения и отталкивания, вызываемые электростатическими разрядами, диск совершал 12. 15 оборотов в минуту и мог нести до 100 серебряных монет. Первые электромагнитные двигатели (приборы, в которых либо проводник, через который протекал ток вращался вокруг стержневого магнита (рис. 2), совершая при этом работу — перемешивая ртуть, либо стержневой магнит вращался вокруг проводника с током, изобрел в 1821 году ассистент Лондонского Королевского института (Royal Institution) Майкл Фарадей (Michael Faraday).

Принцип действия электродвигателя

Рис. 2. Принцип устройства опытного прибора Майкла Фарадея для демонстрации электрического вращения.
1 — вращающийся металлический стержень, 2 — стержневой магнит, 3 — стеклянный или фарфоровый сосуд, 4 — ртуть, 5 – уплотнение, i — ток

Первый (качающийся) двигатель, который, в принципе, можно было бы соединить с приводимой рабочей машиной, изготовил в 1831 году учитель математики и природоведения школы мальчиков города Албани (Albany, США) Джозеф Генри (Joseph Henry, 1797-1878); принцип устройства этого двигателя представлен на рис. 3.

Принцип действия электродвигателя

Рис. 3. Принцип устройства качающегося электродвигателя Джозефа Генри.
1 — постоянные магниты, 2 — качающийся электромагнит, 3 — вал, 4 — ртутные контакты.

После двигателя Генри было создано еще несколько различных опытных электродвигателей возвратно-поступательного движения. Первый вращающийся электродвигатель создал с целью реального применения 8 апреля 1834 года инспектор порта Пиллау rPiilau, Восточная Пруссия), инженер-строитель Мориц Герман Яко6и (Moritz Hermann Jacobi. 1801-1874), изучавший самостоятельно электротехнику в библиотеке и в лабораториях Кенигсбергского университета. Восьмиполюсный двигатель, у которого как статор, так и ротор состояли из четырех подковообразных электромагнитов и который совершал 80… 120 оборотов в минуту, получал питание из батареи гальванических элементов напряжением 6V. Мощность его на валу была приблизительно 15 W а КПД — около 13%. Якоби исследовал и совершенствовал свои двигатель, между прочим, в Тартуском университете, профессором гражданской архитектуры которого он был избран в 1835 году.

Мориц Герман (позже, в России — Борис Семенович) Якоби родился в 1801 году в Потсдаме (Potsdam, Германия) в зажиточной семье и получил хорошее домашнее образование; уже в юношестве он одинаково свободно владел немецким, английским и французским языками и отлично знал также латынь и древнегреческий язык. В 1828 году он окончил Геттингенский университет (Gottingen Германия) с квалификацией архитектора, работал затем на строительстве дорог, а в 1833 году переехал в Кенигсберг, где его младший брат Карл Густав Яков Якоби (Carl Gustav Jacob Jacobi, 1804-1851) был профессором математики. Он стал работать инспектором порта Пиллау и посещать Кенигсбергский университет для приобретения знаний по электротехнике. В 1834 году он построил вышеупомянутый двигатель, а в 1835 году, по инициативе профессора астрономии Тартуского университета Фридриха Георга Вильгельма Струве (Friedrich Georg Wilhelm Struve, 1793-1864) он был избран профессором гражданской архитектуры этого университета. Его двигатель вызвал интерес в Петербурге, и в 1837 году Якоби был прикомандирован к столичной Академии Наук для разработки электропривода военных кораблей, оставаясь до 1840 года официально на службе в Тартуском университете. В 1838 году Якоби испытал на Неве первый в мире электропривод с вращающимся двигателем (установленный на морском боте), но дальнейшие исследования показали, что для электропитания привода, к сожалению, нет технически и экономически пригодного источника энергии.

В 1839 году Якоби был избран членом-корреспондентом, а в 1842 году — членом Академии Наук и в дальнейшем занимался, в основном, развитием электромагнитного телеграфа, гальванотехники и метрологии. Неоднократно он встречался с Майклом Фарадеем, известными французскими и немецкими физиками того времени.

В середине 19-го века было разработано еще несколько разновидностей двигателей постоянного тока, но их практическому применению воспрепятствовали малая мощность и, как установил уже Якоби, недостаточная экономическая эффективность источников электропитания того времени — гальванических элементов и примитивных электромашинных генераторов. Более широко применение электродвигателей стало возможным только в 1866 году после появления генераторов постоянного тока с самовозбуждением .

После появления многофазной системы переменного тока немецкая фирма АЭГ стала исследовать возможности использования асинхронных двигателей, изобретенных ее главным инженером Михаилом Доливо-Добровольским (на немецкий лад Michael von Dolivo-Dobrowolsky) и представил 8 марта 1889 заявление на патентование короткозамкнутого асинхронного двигателя. После этого началось широкое применение надежных и высокоэффективных двигателей переменного тока. В настоящее время все вышеназванные электродвигатели достигли очень высокого технического уровня и находят широчайшее применение в стационарных установках, а в последнее время все чаще и в средствах передвижения.

Принцип работы электродвигателей

Принцип действия электродвигателя

Электродвигатель является одним из ключевых изобретений человечества. Именно благодаря электрическим моторам нам удалось добиться такого высокого развития нашей цивилизации. Основные принципы работы этого устройства изучаются уже в школе. Современный электродвигатель может выполнять множеств различных задач. В основе его работы лежит передача вращения электроприводного вала на другие виды движения. В этой статье мы подробно рассмотрим, как работает это устройство.

Характеристики электродвигателей

Электромотор, по сути, представляет собой прибор, при помощи которого электрическая энергия переходит в механическую. В основе этого явления лежит магнетизм. Соответственно, в конструкцию электродвигателя входят постоянные магниты и электрические магниты, а также различные другие материалы, обладающие притягивающими свойствами. Сегодня этот прибор используется практически повсеместно. Например, электромотор является ключевой деталью часов, стиральных машин, кондиционеров, миксеров, фенов, вентиляторов, кондиционеров и других бытовых приборов. Вариантов использования электродвигателя в промышленности бесчисленное множество. Их размеры тоже варьируются от головки спички до двигателя на поездах.

Принцип действия электродвигателя

Виды электромоторов

В настоящее время производится множество разновидностей электромоторов, которые разделяются по типу конструкции и электропитания.

По принципу электропитания все модели можно разделить на:

  1. устройства переменного тока, которые в качестве питания используют электросеть;
  2. приборы постоянного тока, работающие от блоков питания, пальчиковых батареек, аккумуляторов и других подобных источников.

Принцип действия электродвигателя

По механизму работы все электродвигатели разделяются на:

  1. синхронные, имеющие роторные обмотки и щеточный механизм, использующийся для подачи на обмотки электрического тока;
  2. асинхронные, отличающиеся более простой конструкцией без щеток и роторных обмоток.

Принцип работы этих электромоторов существенно отличается. Синхронный двигатель вращается с той же скоростью, что и магнитное поле, которое его вращает. В то же время, асинхронный мотор вращается с меньшей скоростью, чем электромагнитное поле.

Классы электродвигателей (различаются в зависимости от используемого тока) :

  • класс AC (Alternating Current) — работает от переменного источника тока;
  • класс DC (Direct Current) — использует для работы постоянный ток;
  • универсальный класс, который может использовать для работы любой источник тока.

Кроме того, электрические двигатели могут отличаться не только по типу конструкции, но и также по способам контроля скорости вращений. При этом, во всех устройствах независимо от типа используется один и тот же принцип преобразования электрической энергии в механическую.

Принцип работы агрегата на постоянном токе

Принцип действия электродвигателя

Этот тип электромотора работает на основе принципа, разработанного Майклом Фарадеем в далеком 1821 году. Его открытие заключается в том, что при взаимодействии электрического импульса с магнитом есть вероятность возникновения постоянного вращения. То есть, если в магнитном поле разметить вертикальную рамку и пропустить по ней электрический ток, то вокруг проводника может возникнуть электромагнитное поле. Оно будет непосредственно контактировать с полюсами магнитов. Получается, что к одному из магнитов рамка будет притягиваться, а от другого отталкиваться. Соответственно, она повернется из вертикального положения в горизонтальное, в котором влияние магнитного поля на проводник будет нулевым. Получается, что для продолжения движения нужно будет дополнить конструкцию еще одной рамкой под углом или же поменять направление тока в первой рамке. В большинстве приборов это достигается за счет двух полуколец, к которым присоединяются контактные пластинки от аккумулятора. Они способствуют быстрому изменению полярности, в результате чего движение продолжается.

Современные электромоторы не имеют постоянных магнитов, так как их место занимаю электрические магниты и катушки индуктивности. То есть, если вы разберете любой такой двигатель, то увидите витки проволоки, покрытые изоляционным составом. По сути, они и представляют собой электромагнит, который еще называется обмоткой возбуждения. Постоянные магниты в конструкции электродвигателей применяются только в небольших детских игрушках, работающих от пальчиковых батареек. Все остальные более мощные электродвигатели оснащаются только электрическими магнитами или же обмотками. При этом, вращающаяся деталь получила название ротор, а статичная — статор.

Как работает асинхронный электромотор

Принцип действия электродвигателя

Корпус асинхронного двигателя вмещает в себя обмотки статора, благодаря которым и создается вращающееся поле магнита. Концы для подключения обмоток выводят через специальную клеммную колодку. Охлаждение осуществляется за счет вентилятора, размещенного на вале в торце электрического двигателя. Ротор плотно соединен с валом, изготовленным из металлических стержней. Эти короткозамкнутые стержни замыкаются между собой с обеих сторон. За счет такой конструкции, двигатель не нуждается в периодическом обслуживании, так как здесь нет необходимости время от времени менять токоподающие щетки. Именно поэтому, асинхронные моторы считаются более надежными и долговечными, чем синхронные. В основном причиной поломки асинхронных двигателей является изнашивание подшипников, на которых осуществляется вращение вала.

Для работы асинхронных двигателей необходимо, чтобы вращение ротора осуществлялось медленнее, чем вращение электромагнитного поля статора. Именно за счет этого в роторе и возникает электрический ток. Если бы вращение осуществлялось с одинаковой скоростью, то по закону индукции ЭДС не образовывалось бы, и отсутсвовало вращение в целом. Однако, в настоящей жизни за счет трения подшипников и повышенной нагрузки на вал ротор будет крутиться медленнее. Магнитные полюса регулярно вращаются в обмотках ротора, за счет чего постоянно изменяется направление тока в роторе.

Принцип действия электродвигателя

По этому же принципу работает и круговая пила, так как наибольшие обороты она набирает без нагрузки. Когда пила начинает резать доску, ее скорость вращения снижается и одновременно ротор начинает вращаться медленнее по отношению к электромагнитному полю. Соответственно, по законам электротехники в нем начинает возникать еще большая величина ЭДС. После этого возрастает потребляемый мотором ток и он начинает работу на полной мощности. При нагрузке, при которой мотор застопорится, может возникнуть разрушение короткозамкнутого ротора. Это возникает из-за того, что в двигателе возникает максимальная величина ЭДС. Именно поэтому необходимо подбирать электромотор необходимой мощности. Если взять двигатель слишком большой мощности, то это может привести к неоправданным затратам энергии.

Принцип действия электродвигателя

Скорость, с которой вращается ротор, в данном случае зависит от количества полюсов. Если в устройстве имеется два полюса, то скорость вращения будет соответствовать скорости вращения магнитного поля. Максимально асинхронный электрический двигатель может развивать до 3 тысяч оборотов в секунду. Частота сети при этом может составлять до 50 Гц. Для уменьшения скорости в два раза вам придется повысить количество полюсов в статоре до 4 и так далее. Единственный недостаток асинхронных моторов — это то, что они могут поддаваться регулировке скорости вращения вала только посредством изменения частоты электрического тока. Кроме того, в асинхронном моторе вы не сможете добиться постоянной частоты вращения вала.

Как работает синхронный электрический двигатель переменного тока

Принцип действия электродвигателя

Синхронный электрический двигатель применяется в тех случаях, когда нужна постоянная скорость вращения и возможность ее быстрой регулировки. Кроме того, синхронный мотор используется там, где нужно добиться скорости вращения более 3 тысяч оборотов, что является пределом для асинхронного двигателя. Поэтому, такой тип электродвигателя преимущество используется в бытовой технике, такой как пылесос, электрический инструментарий, стиральная машина и так далее.

Корпус синхронного мотора переменного тока содержит обмотки, которые наматываются на якорь и ротор. Их контакты припаиваются к секторам токосъемного коллектора и кольца, на которые посредством графитовых щеток подают напряжение. Выводы здесь располагаются так, чтобы щетки всегда подавали напряжения только на одну пару. Из недостатков синхронного мотора можно отметить их меньшую надежность, по сравнению асинхронными двигателями.

Принцип действия электродвигателя

Самые частые поломки синхронных двигателей:

  • Преждевременный износ щеток или нарушение их контакта из-за ослабления пружины.
  • Загрязнение коллектора, который чистится при помощи спирта или нулевой наждачной бумаги.
  • Изнашивание подшипников.

Принцип работы синхронного мотора

Вращающий момент в таком электродвигателе создается путем взаимодействия между магнитным полем и током якоря, которые контактируют между собой в обмотке возбуждения. По мере направления переменного тока будет изменяться и направление магнитного потока, что обеспечивает вращение в только в одну сторону. Скорость вращения регулируется путем изменения силы подаваемого напряжения. Изменение скорости напряжения чаще всего используется в пылесосах и дрелях, где для этой цели применяется переменное сопротивление или реостат.

Принцип действия электродвигателя

Механизм работы отдельных типов двигателя

Промышленные электродвигатели могут работать как на постоянном, так и на переменном токе. В основе их конструкции лежит статор, который представляет собой электромагнит, создающий магнитное поле. Промышленный электромотор содержит обмотки, которые поочередно подключаются к источнику питания при помощи щеток. Они попеременно поворачивают ротор на определенный угол, что приводит его в движение.

Принцип действия электродвигателя

Самый простой электродвигатель для детских игрушек может работать только при помощи постоянного тока. То есть, он может получать ток от пальчиковой батарейки или аккумулятора. Ток при этом проходит по рамке, находящейся между полюсами магнита постоянного типа. Благодаря взаимодействию магнитных полей рамки с магнитом она начинает вращаться. По завершению каждого полуоборота, коллектор переключает контакты в рамке, которые проходят к батарейке. В результате этого рамка совершает вращательные движения.

Таким образом, на сегодняшний день существует большое количество электродвигателей разнообразного предназначения, которые имеют один принцип работы.

Источники: http://fb.ru/article/146395/printsip-rabotyi-elektrodvigatelya-printsip-rabotyi-elektrodvigatelya-peremennogo-toka-fizika-klass, http://www.eti.su/articles/electrotehnika/electrotehnika_304.html, http://ekowheel.com/blog/elektrodvigatel/kak-rabotaet-elektrodvigatel

Рейтинг
( Пока оценок нет )
Всё об электрике в доме
Добавить комментарий