Петля фаза нуль методика измерения

Содержание
  1. Измерение петли «фаза-ноль»
  2. Почему измерения предпочтительнее расчетов
  3. Методика измерения петли «фаза — ноль»
  4. Считывание и оформление результата
  5. Измерение сопротивления петли «фаза-ноль»
  6. Договор на услуги электолаборатории
  7. Необходимость проведения замера петли «фаза-ноль»
  8. Периодичность испытаний петли фаза ноль
  9. Суть и методика проведения проверки сопротивления петли фаза ноль
  10. 1 этап. Проведение визуального осмотра электроустановки
  11. 2 этап. Проведение измерений петли фаза ноль
  12. 3 этап. Проведение расчетов и составление протокола испытания
  13. Оборудование для проведения замера петли «фаза-ноль»
  14. Результаты измерений петли фаза ноль и возможные последствия
  15. Протокол проверки согласования параметров цепи «фаза – нуль»
  16. Образцы протоколов электроиспытаний ЭТЛ Эколайф
  17. Как измерить сопротивление петли фаза-ноль?
  18. Периодичность и назначение замеров
  19. Обзор методик
  20. Какие приборы используют?

Измерение петли «фаза-ноль»

Измерение петли «фаза – ноль» производится во время приемосдаточных испытаний при введении новой электроустановки в эксплуатацию или после ремонта (реконструкции) старой. Проверка состояния защитных коммутационных аппаратов по требованию службы охраны труда также может сопровождаться измерениями сопротивления контура, образующегося при соединении фазного проводника с нулевым.

Почему измерения предпочтительнее расчетов

Расчет этого параметра возможен, но истинное значение будет отличаться от полученного в результате вычислений. Причина в том, что такие факторы, как переходные сопротивления рубильников, контакторов и прочих аппаратов учесть в расчете невозможно. Кроме того, неизвестен точный путь прохождения тока в режиме короткого замыкания, ведь в цепь включено такое оборудование, как контур заземления, различные трубопроводы и металлические конструкции. Измерение сопротивления петли «фаза – ноль» и тока КЗ с помощью специального прибора все эти факторы автоматически учитывает.

Методика измерения петли «фаза — ноль»

Петля фаза нуль методика измерения Применяются следующие методы измерения: падения напряжения в отключенной цепи, то же – на нагрузочном сопротивлении и метод КЗ. Второй способ реализован в принципе действия прибора производства Sonel типа MZC-300. Методика выполнения измерений таким методом изложена в ГОСТе 50571.16-99. Достоинство этого метода – в простоте и безопасности.

Прежде, чем приступить к основным измерениям, следует испытать сопротивление и непрерывность защитных проводников. Во время проведения измерений прибором MZC-300 следует учитывать, что возможна автоматическая блокировка процесса в следующих случаях:

  1. Напряжение в сети превышает 250 В: прибор в это время издает звуковой продолжительный сигнал, а на дисплее появляется надпись «OFL». В таком случае измерения необходимо прекратить.
  2. При разрыве цепи PE/N на дисплее появится символ в виде двойного тире и будет звучать сигнал после нажатия на кнопку «start». Необходимо быть осторожным: защита от токов КЗ в сети отсутствует.
  3. При снижении напряжения в испытуемой цепи менее 180 В на дисплее загорается символ «U», что сопровождается двумя продолжительными звуковыми сигналами после нажатия на кнопку «start».
  4. В случае перегрева прибора из-за значительных нагрузок появляется на дисплее символ «Т» и звучат два сигнала. В этом случае нужно уменьшить количество операций за единицу времени.

Для проведения измерений соответствующие клеммы прибора подключают к одной из фаз и глухозаземленной нейтрали (в сети с защитным заземлением вместо нейтрали подключают прибор к заземляющему проводнику). При проверке состояния защиты электроустановки от замыкания на корпус прибор MZC-300 подключают к заземляющей клемме корпуса и фазному проводу. Необходимо следить за тем, чтобы контакт был надежным: применять следует проверенные наконечники (если необходимо – заостренные зонды), а место соединения должно быть очищено от окиси.

Во время измерения прибором серии MZC-300 происходит имитация короткого замыкания: ток протекает через резистор с известным сопротивлением (10 Ом) в течении 30 мс. Уменьшенное значение силы тока является одним из параметров, участвующих в образовании результата. Непосредственно перед определением значения такого тока прибор измеряет реальное напряжение в сети. Производится поправка по векторам тока и напряжения, после чего процессор высчитывает полное сопротивление петли КЗ, раскладывая его на реактивную и активную составляющие и угол сдвига фаз, образующийся в измеряемой цепи во время протекания тока КЗ. Диапазон измерения полного сопротивления выбирается прибором автоматически.

Считывание и оформление результата

Петля фаза нуль методика измеренияПосле измерения результат может быть отображен на дисплее в виде значения полного сопротивления петли КЗ или тока КЗ. Для просмотра и смены режима отображения следует нажать клавишу Z/I. Полное сопротивление отражает дисплей, а значение тока КЗ необходимо вычислять.

После подключения прибора к испытуемой цепи определяется напряжение, после чего нажатием на кнопку «start» включается измерительный режим. Если не действуют факторы, которые могут стать причиной блокировки процесса, на дисплее появляется ожидаемое значение тока КЗ или полного сопротивления. Если необходимо знать значения других параметров (реактивного и активного сопротивления, угол сдвига фаз), следует воспользоваться кнопкой SEL. Предельное значение реактивного, активного и полного сопротивления – 199,9 Ом. При превышении этого предела дисплей отразит символ OFL, если же прибор будет находиться в режиме измерения тока КЗ, отобразится символ UFL, означающий малую величину. При необходимости увеличить диапазон нужно использовать другую модификацию прибора — MZC-ЗОЗЕ: специальная функция RCD позволяет получить результаты до 1999 Ом.

Периодичность проведения измерений сопротивления петли «фаза – ноль» определяется документом ПТЭЭП и системой ППР, которая предусматривает своевременное проведение капитальных и текущих ремонтов электрооборудования. В случае выхода из строя устройств защиты после их ремонта или замены проводятся внеплановые работы по установлению значений параметров цепи «фаза – ноль».

Заключение о результатах измерений выполняется следующим образом. После выполнения всех работ по изложенной выше методике, получаем величину однофазного тока КЗ. Сравниваем результат с током, при котором срабатывает расцепитель выключателя-автомата или с номиналом плавко вставки. Делаем выводы о пригодности оборудования защиты. Все полученные результаты заносятся в протокол установленной формы.

Измерение сопротивления петли «фаза-ноль»

Петля фаза нуль методика измерения

Электролаборатория ГК Эколайф выполняет измерение сопротивления петли «фаза-ноль» на основе действующего Свидетельства о регистрации электролаборатории, с учетом действующих нормативных документов: Правил Устройства Электроустановок, Правил Технической Эксплуатации Электроустановок Потребителей, ГОСТ и других.

Договор на услуги электолаборатории

Наша компания работает с юридическими и физическими лицами. Мы заключаем договор на услуги электролаборатории, который является документом, четко определяющим стоимость и сроки выполнения работ. Заранее обговоренные условия снижают риски для обеих сторон, а также обеспечивают выгоду сделки для продавца и покупателя.
Подписание актов выполненных работ и приема-передачи оборудования означает успешное окончание работ. Мы предоставляем полный пакет документов, в том числе накладные, акты, счета-фактуры и кассовые чеки при оплате наличными, акты пуско-наладки, параметры настройки системы.

Выезд инженера для расчета стоимости работ производится бесплатно

Все слышали фразу «Человек быстро привыкает к хорошему». Но всегда ли мы её осознаём? Вспомните ситуацию, когда человек сидит за компьютером или смотрит телевизор, и происходит отключение электроэнергии. Многие раздосадованные люди в этот момент решают, что если уж отдохнуть не получилось, то нужно пойти что-нибудь сделать полезного. И достают пылесос или пытаются включить стиральную машину, забывая, что и эти приборы работают от электричества!

Именно для того, что подобные отключения были более редкими, а система электроснабжения оставалась надёжной, необходимо проведение технического обслуживания и профилактических работ. И в данной статье пойдёт речь об очень важном исследовании, которое является обязательным в составе Технического отчёта электротехнической лаборатории.

Необходимость проведения замера петли «фаза-ноль»

Конечно же, деятельность любой электролаборатории направлена на предупреждение аварийных ситуаций в работе электроустановок всех типов. Проверка параметров цепи «фаза–ноль» – не исключение. Но для того чтобы понять, на предупреждение каких именно негативных последствий направлено данное измерение, нужно знать конечную цель этого измерения.
Ни для кого не секрет, что жилы одного кабеля ни в коем случае нельзя замыкать. Но если это произошло, то произойдёт очень красочное и яркое зрелище, под названием «короткое замыкание» (или сокращённо «К.З.»). Это информация так же известна всем со школьной скамьи из уроков физики. А вот что мало кто помнит или не знает вообще, так это о том факте, что при коротком замыкании происходит резкий скачок тока, в результате которого жилы кабеля невероятно сильно нагреваются, в доли секунды плавят и воспламеняют изоляцию. А если основание, по которому проложен кабель, горючее, то вероятность возникновения пожара неминуема.

Именно поэтому в электроустановках используют автоматические устройства защитного отключения, такие как автоматические или дифференциальные выключатели, устройства защитного отключения (УЗО), плавкие вставки и т.п. Их назначение – вовремя прекратить подачу электричества в линию с коротким замыканием. И, говоря «вовремя», имеются в виду доли секунды, ведь докрасна нагретый кабель и салют из искр способны спровоцировать пожар в очень короткий промежуток времени.

Из всего вышеизложенного напрашивается очевидный вывод: для того, чтобы избежать разрушающих последствий короткого замыкания, необходимо рассчитать и установить нужное по характеристикам устройство защиты. Собственно, ради этого и проводится проверка параметров цепи «фаза – нуль».

Периодичность испытаний петли фаза ноль

Электричество, энергоносители и энергопотребители – вещи динамические, потому что зависят от множества условий, параметров и характеристик. Конечно, никто не говорит о резких и глобальных изменениях, но некоторые колебания электрической сети, безусловно, присущи. Именно поэтому за состоянием элементов электроустановок необходимо постоянно следить и проводить периодические испытания их составляющих.

Для наглядности можно рассмотреть вот такой пример. Подавляющее большинство людей думают, что в каждой бытовой розетке используется напряжение ровно 220 вольт. В действительности, напряжение может быть различным даже в соседних зданиях. Более того, ГОСТами это предусмотрено: допустимое отклонение +/- 5%, предельное отклонение +/- 10% от номинальных 220 или 230 вольт. Следовательно, если замер напряжения в сети 220В показывает параметр, находящийся в диапазоне от 198 до 242 вольт, то это норма. А если в качестве номинального используется напряжение 230В, то верхний порог может достигать 253 вольт, и это так же будет нормой. Нормой, с предельным отклонением, но всё же нормой!
Получается, что максимально допустимая вилка разницы напряжения в сети, в зависимости от номинальных 220 или 230 вольт, может составлять 44 или 46 вольт (от -10% до + 10%) соответственно. Серьёзный перепад напряжения, не правда ли. И подобные перепады, безусловно, не лучшим образом влияют на электроустановки и систему электроснабжения в целом. А если забежать немного вперёд и учесть, что ток короткого замыкания является отношением напряжения цепи к полному сопротивлению её проводников, то можно смело заявить, что величина напряжения напрямую влияет на величину тока короткого замыкания, и чем выше напряжение, тем ток при коротком замыкании будет больше.

Приведённая в данном примере вариантность параметра сети лишь частность. Таких примеров можно назвать бесконечное множество. Причин, влияющих на возникновение подобных примеров, много. В этом списке источники энергоснабжения (электроснабжающие подстанции, промежуточные трансформаторы), качество и состояние электрических проводников и электроустановок, количество потребителей и т.д. Главное – нужно понимать, что состояние этих «причин» не статично, оно постоянно изменяется. Ведь может же в сети измениться количество потребителей? Конечно, может! Следовательно, напряжение в сети хоть немного да изменится. А значит и ток короткого замыкания тоже изменится. Это и является основанием для проведения периодических проверок как отдельных цепей сети, так и электроустановки в целом.

Отметим, что «Правилами Устройства Электроустановок» (ПУЭ ), а так же «Правилами Технической Эксплуатации Электроустановок Потребителей» (ПТЭЭП ), проведение проверки параметров петли «фаза-ноль» регламентировано не реже одного раза в три года. Для электроустановок, расположенных в опасных зонах, не реже одного раза в два года .

Помимо периодических проверок, замеры петли «фаза-ноль» в обязательном порядке необходимо проводить после монтажа электроустановки, а также после проведения капитального её ремонта .

Суть и методика проведения проверки сопротивления петли фаза ноль

Если кратко, то суть процесса заключается в определении тока короткого замыкания на отдельно взятой линии сети, и сопоставление этого параметра с установленным на той же линии автоматическим устройством защиты. Если перефразировать, то измерение призвано выявить, верно ли подобраны автоматические выключатели по токовременным характеристикам.

А раз измерение так или иначе сводится к характеристикам автоматических устройств защиты, то стоит немного рассказать и о них.
Вообще, устройства защиты, будь то автоматический выключатель, диффавтомат, УЗО или любой другой – устройство довольно простое. И характеристик оно имеет не так уж и много. Но так как в рамках данной статьи нам интересны лишь время-токовые характеристики, то остановимся именно на них.
Любой автоматический выключатель имеет на своей лицевой стороне маркировку. Среди прочих характеристик, там указаны торговая марка, номинальное напряжение, ток и частота сети, для которой этот автомат предназначен, и прочее. Так же, в обязательном порядке маркировка содержит информацию о время-токовой характеристике отключения устройства. Маркируется эта характеристика указанием латинской буквы B, C, D или К (для однофазных автоматов). Следом за этой буквой следует цифра, обозначающая номинальный ток автоматического выключателя. Выглядеть эта аббревиатура может, например, так: «В16», «С32» или «D50». Но так как нас интересует время и токовая величина срабатывания автомата при коротком замыкании, остановимся именно на них.

Что же обозначают буквы B, C, D и К? В этих буквах заключен очень простой смысл, а именно: при каком кратковременном превышении номинального тока автомат сработает (отключится). За основу этого параметра принят, как уже стало понятно, номинальный ток, а показатель превышения измеряется в кратном его увеличении.

Параметры кратности тока, соответствующие этим буквам, следующие:

• тип «B» – отключение автоматического устройства защиты произойдёт, если ток короткого замыкания будет превышать номинальный ток в 3 – 5 раз;
• тип «С» – такой автомат сработает при кратковременном скачке номинального тока в 5 – 10 раз
• тип «D» и «К» – автоматические выключатели этого типа будут эффективны, если номинальный ток увеличится в 10 – 14-ти кратном размере от номинала.

По времени срабатывания в зоне токов короткого замыкания автоматические выключатели подразделяются на:

• селективные – с отключением автоматического выключателя с выдержкой времени,
• нормальные (с временем срабатывания 0,02-1 секунды)
• быстродействующие (с временем срабатывания менее 0,005 секунды).

Теперь, зная параметры защитных устройств на каждой ветке электрической сети, остаётся сопоставить их с данными самой сети. Но, в отличие от автоматических выключателей, показатели сети не статичны и могут претерпевать изменения в процессе эксплуатации. Поэтому и необходимо с определённой периодичностью проводить проверку этих параметров с помощью измерения характеристик петли «фаза-ноль».

Саму процедуру проведения проверки параметров цепи «фаза-ноль» можно разделить на три этапа.

• Проведение визуального осмотра;
• Непосредственное проведение измерений;
• Подведение итогов.

1 этап. Проведение визуального осмотра электроустановки

Во время осмотра, помимо исследования электроустановки, изучения документации и схем, проверки кабельных трасс и корпусов электрооборудования на предмет повреждений, проводят протяжку кабельных соединений в устройствах защиты. Проще говоря – затягивают болты на кабельных клеммах автоматических выключателях. Это крайне важное действие, без которого полученные результаты измерений могут быть просто неверными.

2 этап. Проведение измерений петли фаза ноль

Существуют разные методики для проверки петли фаза-ноль, а также разнообразные специальные измерительные приборы. Что касается методов измерения, основными считаются:

1. Метод падения напряжения. Замеры проводят при отключенной нагрузке, после чего подключают нагрузочное сопротивление известной величины. Работы выполняются с использованием специального устройства. Результат обрабатывают и с помощью расчетов делают сравнение с нормативными данными.
2. Метод короткого замыкания цепи. В этом случае проводят подключение прибора к цепи и искусственно создают короткое замыкание в дальней точке потребления. С помощью прибора определяют ток короткого замыкания и время срабатывания защит, после чего делают вывод о соответствии нормам данной сети.
3. Метод амперметра-вольтметра. Снимают питающее напряжение после чего, используя понижающий трансформатор на переменном токе, замыкают фазный провод на корпус действующей электроустановки.

Полученные данные обрабатывают и с помощью формул определяют нужный параметр. В последние годы именно этот метод завоевал наибольшую популярность.

В сущности, само по себе измерение достаточно примитивно. Оно заключается в определении точных показателей напряжения в сети и сопротивления измеряемых проводников – «фазы» с «нулём», или «фазы» с «землёй» – в зависимости от того, какая именно петля подвергается испытаниям. После подключения щупов прибора к клеммам, прибор автоматически выдаёт на экране показатель напряжения сети, а затем измеряет сопротивление одновременно на проверяемой линии и обмотке трансформатора. Оба значения сопротивления суммируются и получается величина сопротивления, которая будет необходима при дальнейших расчётах.

Для измерений выбирают самые дальние точки линий сети. Если такую точку определить сложно, то проводят измерения по всей линии. Под «точками» понимаются розетки, а так же оборудование, имеющее металлический корпус (станки, двигатели, светильники и т.д.)

После того, как получены оба значения – напряжение и сопротивление сети – можно переходить к расчётам, которые покажут ток короткого замыкания, и помогут определить, правильно ли установлены аппараты защиты.

3 этап. Проведение расчетов и составление протокола испытания

Составление протокола – это просто запись результатов проведения испытаний, и на нём мы остановимся позже. Сейчас же необходимо рассказать о проведении расчётов.

Ток короткого замыкания отражается в следующей зависимости:

где: Iкз – ток короткого замыкания; Uо – фазное напряжение; Rфо – полное сопротивление цепи.

На примере данный расчёт будет выглядеть следующим образом.
Предположим, что измерительный прибор выдал напряжение 225 вольт и полное сопротивление цепи 0,85 Ом. Автоматический выключатель, установленный для защиты этой цепи, имеет маркировку C32.

Итак, для начала нужно определить токовые рамки, в которых установленный автомат будет эффективен. Его маркировка С32 говорит о том, что это защитное устройство рассчитано на номинальное напряжение в 32 ампера, и относится к типу «С», что означает его эффективность проявляется при кратности тока короткого замыкания в пределах от 5 до 10 от номинального. Пятикратное умножение номинального тока дают нам 160 ампер, а десятикратное – 320. То есть, ток короткого замыкания должен быть в пределах от 160 до 320 ампер. Формула данного условия будет выглядеть вот так:

160А ≤ Iкз ≤ 320А

Теперь вычисляем непосредственно величину тока короткого замыкания. Исходные данные для этого расчёта – напряжение и полное сопротивление цепи – берём из результатов измерений.
Подставляем эти цифры в формулу и получаем следующее:

Iкз=225 В / 0,85 Ом=264,7 А

То есть, если в данной цепи произойдёт короткое замыкание, то при этом физическом явлении ток в цепи будет равен 264,7 ампера. Но в нашем примере автоматический выключатель успеет вовремя отреагировать, так как ток короткого замыкания находится как раз в промежутке от 160 до 320 ампер, то есть, в «пределах его юрисдикции»

Приведённый пример достаточно примитивен, но он наглядно показывает процесс исследования. На практике он может быть намного сложнее, в зависимости от того какая цепь сети подвергается замерам. Более того, трёхфазные сети так же подлежат проведению измерений, ведь они тоже попадают в область «электроустановки до 1000В», для которых, собственно, проверка параметров петли «фаза-ноль» актуальна.

Оборудование для проведения замера петли «фаза-ноль»

В сущности, для того, чтобы получить данные для расчёта величины тока короткого замыкания достаточно будет обычного вольтметра и омметра. Но прибор, который делает все необходимые измерения из одной точки, безусловно, гораздо удобнее.

Как уже упоминалось выше, оборудование для проведения испытаний может быть двух типов: работающее без нагрузки в сети, и работающее, когда сеть находится под напряжением. Такая разновидность обусловлена принципом работы приборов. Помимо этого, измерительное оборудование можно разделить на приборы полного цикла, сразу же вычисляющие ток короткого замыкания цепи, и приборы, измеряющие параметры, необходимые для расчёта тока К.З. на бумаге.

Для ускорения процесса измерения петли промышленность выпускает разнообразные измерительные приборы, которые можно использовать для замеров параметров сети по различным методикам. Наибольшую популярность набрали следующие модели:

• Измеритель М-417. Проверенный годами и надежный прибор для измерения сопротивления цепи фаза-ноль без снятия питания. Используют для замеров параметра методом падения напряжения. При использовании этого устройства можно провести испытание цепи с напряжением 380 В с глухозаземленной нейтралью. Он обеспечит размыкание измерительной цепи за 0,3 с. Недостатком является необходимость калибровки перед началом работы.

• Измеритель MZC-300. Устройство нового поколения, построенное на базе микропроцессора. Использует метод измерения падения напряжения при подключении известного сопротивления (10 Ом). Напряжение 180-250 В, время замера 0,03 с. Подключают прибор к сети в дальней точке, нажимают кнопку старт. Результат выводится на цифровой дисплей, рассчитанный с помощью процессора.

• Измеритель ИФН-200. Выполняет много функций, в том числе, и измерение петли фаза-ноль. Напряжение 180-250 В. Для подключения к сети есть соответствующие разъемы. Готов к работе через 10 с. Подключаемое сопротивление 10 Ом. При сопротивлении цепи более 1 кОм измерение проводиться не будут – сработает защита. Энергонезависимая память сохраняет 35 последних вычислений.

Результаты измерений петли фаза ноль и возможные последствия

Как уже стало ясно, данное измерение имеет ряд особенностей.

Во-первых, «проверка параметров цепи «фаза – нуль» и непрерывности защитных проводников» (именно такое полное название имеет данное исследование) проводится, как правило, под нагрузкой. То есть, для проведения замеров не требуется отключение электроэнергии. Более того, без электричества в проводниках данный замер будет выполнить попросту невозможно, потому как для расчёта конечных данных требуются параметры напряжения сети и сопротивления жил кабелей.

Во-вторых, измерения проводят на проводниках, а результаты сопоставляют с установленными устройствами защитного отключения. Для данного замера это правильно и логично, но в сравнении, например, с измерением сопротивления изоляции или металлосвязью заземления, где проводимые измерения относятся к испытуемым элементам, данная процедура – исключение.

В третьих, в отличие от прочих испытаний, проводимых электротехническими лабораториями, проверка параметров цепи «фаза – нуль» не требует имитации реальной ситуации. Например, методика проверки автоматических выключателей заключается в их «прогрузке», то есть, подачи на них электрической нагрузки с целью выявления параметров его срабатывания (отключения). Для проверки сопротивления изоляции кабелей, их так же подвергают воздействию электричества с определёнными параметрами. В случае же с измерениями параметров цепи «фаза-ноль», электроустановка просто работает в штатном режиме, и этого более чем достаточно.

Эти особенности накладывают очень большую ответственность на электротехническую лабораторию в части точности и скрупулёзности проведения данной проверки. Не смотря на кажущуюся простоту всего процесса, он таит в себе очень много нюансов, которые способны повлиять на конечный результат. А если конечный результат будет неверным, то последствия ошибки могут быть колоссальными.

Для подтверждения этих слов можно привести самую простую ситуацию, которая, собственно, чаще всего и происходит, если расчёты не верны либо измерения были проведены с нарушениями. Вспомните пример, который был приведён для расчёта. Расчётный ток короткого замыкания цепи фаза-ноль составил 264,7 ампера, при установленном автоматическом выключателе С32. А теперь предположим, что по каким-то причинам для проверяемой ветки было выбрано устройство защиты с характеристикой D или К. Это автоматически переносит функциональные рамки данного автомата в пределы 320 – 448 ампер. То есть, при коротком замыкании этот автоматический выключатель не защитит линию. Следовательно, жилы проводов будут греться, изоляция кабелей будет плавиться и гореть, а автомат будет оставаться в положении «Включено» больше положенного времени. Для таких ситуаций производители предусматривают в защитных устройствах ещё и тепловую защиту, которая призвана разрывать цепь в случае, если электромагнитный расцепитель не сработал.

Если же рассмотреть обратную ситуацию, когда ток короткого замыкания превышает рамки функциональной эффективности автоматического выключателя, то в этом случае электромагнитный расцепитель, безусловно, сработает в положенное временное окно, и линия будет отключена.

Но есть ещё одна крайне неприятная ситуация, при которой может выгореть не только линия, но и само защитное устройство. В очень редких случаях ток короткого замыкания может превышать номинальный в сотни раз! Например, он может составлять 3000, 5000 или даже 10000 ампер. Не смотря на то, что такая ситуация кажется фантастичной, она вполне реальна и объясняется так: при коротком замыкании, когда сопротивление цепи равно нулю, сила тока стремится к бесконечности. В этот момент трансформатор подстанции выдаёт в цепь максимальный ток который он только может выдать.

Что же происходит в этот момент с проводниками и защитными устройствами? Не секрет, что ток создает вокруг проводника магнитное поле. Таким образом, очень большой ток может создать вокруг проводника замкнутых контактов автомата такое магнитное поле, которое препятствует их размыканию (силы пружины автомата недостаточно для разрыва контактов, слипшихся под действием сильного магнитного поля). Для защиты от таких случаев, для всех автоматических выключателей существует такой параметр как «предельно отключаемый ток». Маркируется он на лицевой стороне автомата в виде цифры, обведённой в прямоугольную рамку.
Таким образом цифра (например 4500А) означает, что автомат сможет разорвать цепь, через которую течет ток 4500А. А вот если ток будет 5000А, то автомат не сможет разорвать цепь. Следовательно, становится понятно, что автоматы с цифрой 6000А более надежны, чем автоматы с цифрой 4500А.

Величина предельного тока в цепи так же можно измерить приборами, но в протоколе она не отражается, потому что данный параметр важен на стадии проектирования и монтажа электроустановки.

Оглядываясь на всё вышесказанное, можно уверенно сказать, что проверка параметров петли «фаза-ноль» должна проводиться только профессионалами своего дела, и только после тщательной предварительной подготовки. В противном случае, результаты измерений окажутся неверными, и в случае чрезвычайной ситуации ущерб, понесённый в результате совершённой ошибки, может оказаться невосполнимым.

Протокол проверки согласования параметров цепи «фаза – нуль»

Результаты измерений заносятся в Протокол проверки согласования параметров цепи «фаза – нуль», образец которого можно увидеть ниже:

Петля фаза нуль методика измерения

Образцы протоколов электроиспытаний ЭТЛ Эколайф

Как измерить сопротивление петли фаза-ноль?

08.07.2016 нет комментариев 11 690 просмотров

Со временем эксплуатации линии электроснабжения в них происходят изменения, которые невозможно проконтролировать визуально или установить их с помощью математических расчетов. Для стабильной и бесперебойной работы электрооборудования необходимо периодически делать замеры определенных параметров. Одним из них является измерение петли фаза-ноль, которое делают при помощи специальных приборов. Если фазный провод замкнуть на нулевой в точке потребления, то между фазным и нулевым проводником создается контур, который и является петлей фаза-ноль. В нее входят: трансформатор, рубильники, выключатели, пускатели – все коммутационное оборудование. Ниже мы расскажем читателям Сам Электрик. как измерить сопротивление петли, предоставив существующие методики и оборудование.

Периодичность и назначение замеров

Для надежной работы электросети необходимо периодически проводить проверку силового кабеля и оборудования. Перед сдачей объекта в эксплуатацию, после капитального и текущего ремонта электросетей, после проведения пуско-наладочных работ, а также по графику, установленном руководителем предприятия проводят эти испытания. Измерения делают по следующим основным параметрам:

  • сопротивление изоляции;
  • сопротивление петли фаза-ноль;
  • параметры заземления;
  • параметры автоматических выключателей.

Петля фаза нуль методика измерения

Основной задачей измерения параметра петли фаза-ноль является защита электрооборудования и кабелей от перегрузок, возникающих в процессе эксплуатации. Повышенное сопротивление может привести к перегреву линии, и как следствие, к пожару. Большое влияние на качество кабеля, воздушной линии оказывает окружающая среда. Температура, влажность, агрессивная среда, время суток – все это оказывает влияние на состояние сети.

В цепь для проведения замеров включают контакты автоматической защиты, рубильники, контакторы, а также проводники подачи напряжения к электроустановкам. Этими проводниками могут быть силовые кабели, подающие фазу и ноль, или воздушные линии, выполняющие эту же функцию. При наличии защитного заземления — фазный проводник и провод заземления. Такая цепь имеет определенное сопротивление.

Полное сопротивление петли фаза-ноль можно рассчитать с помощью формул, которые будут учитывать сечение проводников, их материал, протяженность линии, хотя точность расчетов будет небольшой. Более точный результат можно получить, измерив физическую цепь с имеющимися устройствами.

В случае использование в сети устройства защитного отключения (УЗО), его при измерении необходимо отключить. Параметры УЗО рассчитаны так, что при прохождении больших токов оно произведет отключение сети, что не даст достоверных результатов.

Обзор методик

Существуют разные методики для проверки петли фаза-ноль, а также разнообразные специальные измерительные приборы. Что касается методов измерения, основными считаются:

  1. Метод падения напряжения. Замеры проводят при отключенной нагрузке, после чего подключают нагрузочное сопротивление известной величины. Работы выполняются с использованием специального устройства. Результат обрабатывают и с помощью расчетов делают сравнение с нормативными данными.
  2. Метод короткого замыкания цепи. В этом случае проводят подключение прибора к цепи и искусственно создают короткое замыкание в дальней точке потребления. С помощью прибора определяют ток короткого замыкания и время срабатывания защит, после чего делают вывод о соответствии нормам данной сети.
  3. Метод амперметра-вольтметра. Снимают питающее напряжение после чего, используя понижающий трансформатор на переменном токе, замыкают фазный провод на корпус действующей электроустановки. Полученные данные обрабатывают и с помощью формул определяют нужный параметр.

Основной методикой такого испытания стало измерение падения напряжения при подключении нагрузочного сопротивления. Этот метод стал основным, ввиду его простоты использования и возможности дальнейших расчетов, которые нужно провести для получения дальнейших результатов. При измерении петли фаза-ноль в пределах одного здания, нагрузочное сопротивление включают на самом дальнем участке цепи, максимально удаленном от места подачи питания. Подключение приборов проводят к хорошо очищенным контактам, что нужно для достоверности замеров.

Сначала проводят измерение напряжения без нагрузки, после подключения амперметра с нагрузкой замеры повторяют. По полученным данным делают расчет сопротивления цепи фаза-ноль. Используя готовое, предназначенное для такой работы устройство, можно сразу по шкале получить нужное сопротивление.

После проведения измерения составляют протокол, в который заносят все нужные величины. Протокол должен быть стандартной формы. В него также вносят данные об измерительных приборах, которые были использованы. В конце протокола подводят итог о соответствии (несоответствии) данного участка нормативно-технической документации. Образец заполнения протокола выглядит следующим образом:

Петля фаза нуль методика измерения

Какие приборы используют?

Для ускорения процесса измерения петли промышленность выпускает разнообразные измерительные приборы, которые можно использовать для замеров параметров сети по различным методикам. Наибольшую популярность набрали следующие модели:

  • М-417. Проверенный годами и надежный прибор для измерения сопротивления цепи фаза-ноль без снятия питания. Используют для замеров параметра методом падения напряжения. При использовании этого устройства можно провести испытание цепи с напряжением 380 В с глухозаземленной нейтралью. Он обеспечит размыкание измерительной цепи за 0,3 с. Недостатком является необходимость калибровки перед началом работы.Петля фаза нуль методика измерения
  • MZC-300. Устройство нового поколения, построенное на базе микропроцессора. Использует метод измерения падения напряжения при подключении известного сопротивления (10 Ом). Напряжение 180-250 В, время замера 0,03 с. Подключают прибор к сети в дальней точке, нажимают кнопку старт. Результат выводится на цифровой дисплей, рассчитанный с помощью процессора.Петля фаза нуль методика измерения
  • Измеритель ИФН-200. Выполняет много функций, в том числе, и измерение петли фаза-ноль. Напряжение 180-250 В. Для подключения к сети есть соответствующие разъемы. Готов к работе через 10 с. Подключаемое сопротивление 10 Ом. При сопротивлении цепи более 1 кОм измерение проводиться не будут – сработает защита. Энергонезависимая память сохраняет 35 последних вычислений.Петля фаза нуль методика измерения

О том, как измерить сопротивление петли фаза-ноль с помощью приборов, вы можете узнать, просмотрев данные видео примеры:

Как пользоваться MZC-300

Для использования вышеперечисленных методик необходимо привлекать только обученный персонал. Неправильное проведение замеров может привести к неверным конечным данным или к выходу из строя существующей системы электроснабжения. Хуже всего – это может привести к травмированию работников. Надеемся, теперь вы знаете, для чего нужно измерение петли фаза-ноль, а также какие методики и приборы для этого можно использовать.

Рекомендуем также прочитать:

Как пользоваться MZC-300

Источники: http://tokzamer.ru/uslugi/izmerenie-petli-faza-nol, http://vnt24.ru/izmerenie-faza-nol, http://samelectrik.ru/kak-izmerit-soprotivlenie-petli-faza-nol.html

Рейтинг
( Пока оценок нет )
Всё об электрике в доме
Добавить комментарий