Как работает трансформатор тока
- В каком режиме работает трансформатор тока
- В каком режиме работает измерительный трансформатор напряжения
- Видео
В процессе эксплуатации энергетических систем довольно часто решаются вопросы, связанные с необходимостью каких-либо установленных электрических величин в аналогичные величины с измененными значениями в определенной пропорции. Такая возможность позволяет выполнять безопасные измерения, производить моделирование определенных процессов в электроустановках. Для этого необходимо знать, как работает трансформатор тока, действие которого основано на законе электромагнитной индукции, применяемого для электрических и магнитных полей.
В процессе работы выполняется преобразование первичной величины вектора тока, протекающего в силовой цепи, во вторичный ток с пониженным значением. Во время такого преобразования соблюдается пропорциональность по модулю и точная передача угла.
В каком режиме работает трансформатор тока
Работа трансформатора может осуществляться в нескольких режимах. Одним из них является режим холостого хода, при котором вторичная обмотка находится в разомкнутом состоянии. Потребление тока первичной цепью самое минимальное, поэтому он называется током холостого хода. Магнитное поле холостого хода образуется вокруг первичной обмотки. Данный режим считается абсолютно безвредным для трансформатора.
Основным является режим нагрузки, в который трансформатор переходит из режима холостого хода. Во вторичной обмотке начинается течение тока, создающего магнитный поток, направленный против магнитного поля в первичной обмотке. В первый момент значение этого магнитного потока уменьшается, что приводит к уменьшению ЭДС самоиндукции в первичной обмотке.
Поскольку внешнее напряжение, приложенное к генератору, не изменяется, это приводит к нарушению электрического равновесия между приложенным напряжением и ЭДС самоиндукции, а ток в первичной обмотке увеличивается. Соответственно увеличивается и магнитный поток, а также электродвижущая сила самоиндукции. Однако значение тока в первичной обмотке будет выше, чем в режиме холостого хода. Таким образом, сумма магнитных потоков первичной и вторичной обмоток в режиме нагрузки, будет равна магнитному потоку первичной обмотки трансформатора в режиме холостого хода.
В режиме нагрузки, когда появляется вторичный ток, происходит возрастание первичного тока. Это приводит к падению напряжения во вторичной обмотке и его уменьшению. В случае снижения нагрузки, при которой вторичный ток уменьшается, наступает уменьшение и размагничивающего действия вторичной обмотки. Наблюдается рост магнитного потока в сердечнике и соответствующий рост самоиндукции ЭДС. Данный процесс, касающийся электрического равновесия, продолжается до тех пор, пока оно полностью не восстановится.
Одним из основных считается и режим короткого замыкания. при котором во вторичной цепи будет практически нулевое сопротивление. Ток во вторичной цепи достигает максимального значения, магнитное поле во вторичной обмотке также будет иметь наивысший показатель. Одновременно, магнитное поле в первичной обмотке уменьшается и становится минимальным. Следовательно, происходит и снижение индуктивного сопротивления в этой обмотке. В то же время возрастает ток, потребляемый первичной цепью. Данная ситуация приводит к возникновению режима короткого замыкания, опасного не только для самого трансформатора, но и для всей цепи. Защита от короткого замыкания обеспечивается путем установки предохранителей в первичной или вторичной цепи.
Особенности работы трансформатора тока в разных условиях:
- Режим работы приближается к короткому замыканию, поскольку сопротивление нагрузки, подключаемой совместно со вторичной обмоткой, имеет минимальное значение. Фактически, работа трансформатора тока происходит в режиме короткого замыкания.
- Трансформатор тока своим режимом работы существенно отличается от других трансформаторных устройств. При изменении нагрузки в обычном трансформаторе, значение магнитного потока в сердечнике не изменяется при условии постоянно приложенного напряжения.
В каком режиме работает измерительный трансформатор напряжения
Важнейшими элементами высоковольтных цепей являются измерительные трансформаторы напряжения. Данные устройства предназначены для понижения высокого напряжения, после чего пониженное напряжение может питать измерительные цепи, релейную защиту, автоматику и учет, а также другие элементы. Таким образом, трансформаторы напряжения позволяют измерять напряжение в высоковольтных сетях, от них поступает питание на катушки реле минимального напряжения, счетчики, ваттметры, фазометры, а также на аппаратуру, контролирующую состояние изоляции сети.
С помощью трансформатора осуществляется понижение высокого напряжения до стандартных значений. С их помощью происходит разделение измерительных цепей и релейной защиты с первичными цепями высокого напряжения. Подключение первичной обмотки производится к источнику входного напряжения сети, а вторичная обмотка соединяется параллельно с катушками реле и измерительных приборов. Работа трансформатора напряжения осуществляется в режиме, приближенном к холостому ходу. Это связано с высоким сопротивлением приборов, подключенных параллельно и низким током, потребляемым ими.
Для обеспечения нормальной работы вторичных цепей установка трансформаторов напряжения может выполняться не только на шинах подстанции, но и на каждой точке подключения. Перед началом электромонтажных работ необходимо осмотреть устройство, проверить целостность изоляции, исправность узлов и элементов. С целью дальнейшей безопасной эксплуатации трансформатора, его корпус и вторичная обмотка заземляется. В результате, создается защита от возможного перехода высокого напряжения во вторичные цепи в случае пробоя изоляции.
Каждый трансформатор обладает определенной номинальной погрешностью и классами точности, составляющими 0,2; 0,5; 1; 3. Уровень погрешности зависит от конструкции магнитопровода, размеров вторичной нагрузки и других факторов. Компенсировать погрешность напряжения можно, если уменьшить количество витков первичной обмотки и компенсировать угловую погрешность специальными компенсирующими обмотками.
Трансформаторы тока — принцип работы и применение
При эксплуатации энергетических систем часто возникает необходимость преобразования определенных электрических величин в подобные им аналоги с пропорционально измененными значениями. Это позволяет моделировать определенные процессы в электроустановках, безопасно выполнять измерения.
Работа трансформатора тока (ТТ) основана на законе электромагнитной индукции. действующего в электрических и магнитных полях, изменяющихся по форме гармоник переменных синусоидальных величин.
Он преобразует первичную величину вектора тока, протекающего в силовой цепи, во вторичное пониженное значение с соблюдением пропорциональности по модулю и точной передачей угла.
Принцип работы трансформатора тока
Демонстрацию процессов, происходящих при преобразованиях электрической энергии внутри трансформатора, поясняет схема.
Через силовую первичную обмотку с числом витков ω1 протекает ток I1, преодолевая ее полное сопротивление Z1. Вокруг этой катушки формируется магнитный поток Ф1, который улавливается магнитопроводом, расположенным перпендикулярно направлению вектора I1. Такая ориентация обеспечивает минимальные потери электрической энергии при ее преобразовании в магнитную.
Пересекая перпендикулярно расположенные витки обмотки ω2, поток Ф1 наводит в них электродвижущую силу Е2, под влиянием которой возникает во вторичной обмотке ток I2, преодолевающий полное сопротивление катушки Z2 и подключенной выходной нагрузки Zн. При этом на зажимах вторичной цепи образуется падение напряжения U2.
Величина К1, определяемая отношением векторов I1/I2, называется коэффициентом трансформации. Ее значение задается при проектировании устройств и замеряется в готовых конструкциях. Отличия показателей реальных моделей от расчетных значений оценивается метрологической характеристикой — классом точности трансформатора тока.
В реальной работе значения токов в обмотках не являются постоянными величинами. Поэтому коэффициент трансформации принято обозначать по номинальным значениям. Например, его выражение 1000/5 означает, что при рабочем первичном токе 1 килоампер во вторичных витках будет действовать нагрузка 5 ампер. По этим значениям и рассчитывается длительная эксплуатация этого трансформатора тока.
Магнитный поток Ф2 от вторичного тока I2 уменьшает значение потока Ф1 в магнитопроводе. При этом создаваемый в нем поток трансформатора Фт определяется геометрическим суммированием векторов Ф1 и Ф2.
Опасные факторы при работе трансформатора тока
Возможность поражения высоковольтным потенциалом при пробое изоляции
Поскольку магнитопровод ТТ выполнен из металла, обладает хорошей проводимостью и соединяет между собой магнитным путем изолированные обмотки (первичную и вторичную), то возникает повышенная опасность получения электротравм персоналом или повреждения оборудования при нарушениях изоляционного слоя.
С целью предотвращения таких ситуаций используется заземление одного из вторичного выводов трансформатора для стекания через него высоковольтного потенциала при авариях.
Эта клемма всегда имеет обозначение на корпусе прибора и указывается на схемах подключения.
Возможность поражения высоковольтным потенциалом при разрыве вторичной цепи
Выводы вторичной обмотки маркируют «И1» и «И2» так, чтобы направление протекающих токов было полярным, совпадало по всем обмоткам. При работе трансформатора они всегда должны быть подключены на нагрузку.
Объясняется это тем, что проходящий по первичной обмотке ток обладает мощностью (S=U·I) высокого потенциала, которая трансформируется во вторичную цепь с малыми потерями и при разрыве в ней резко уменьшается составляющая тока до значений утечек через окружающую среду, но при этом значительно возрастает падение напряжения на разорванном участке.
Потенциал на разомкнутых контактах вторичной обмотки при прохождении тока в первичной схеме может достигать нескольких киловольт, что очень опасно.
Поэтому все вторичные цепи трансформаторов тока постоянно должны быть надежно собраны, а на выведенных из работы обмотках или кернах всегда устанавливаются шунтирующие закоротки.
Конструкторские решения, используемые в схемах трансформаторов тока
Любой трансформатор тока, как электротехническое устройство, предназначен для решения определенных задач при эксплуатации электроустановок. Промышленность выпускает их большим ассортиментом. Однако, в некоторых случаях при усовершенствовании конструкций бывает проще использовать готовые модели с отработанными технологиями, чем заново проектировать и изготавливать новые.
Принцип создания одновиткового ТТ (в первичной схеме) является базовым и показан на картинке слева.
Здесь первичная обмотка, покрытая изоляцией, выполнена прямолинейной шиной Л1-Л2, проходящей через магнитопровод трансформатора, а вторичная намотана витками вокруг него и подключена на нагрузку.
Принцип создания многовиткового ТТ с двумя сердечниками, показан справа. Здесь берется два одновитковых трансформатора со своими вторичными цепями и через их магнитопроводы пропускается определенное количество витков силовых обмоток. Таким способом не только усиливается мощность, но дополнительно увеличивается количество выходных подключаемых цепочек.
Три этих принципа могут быть модифицированы различными способами. Например, применение нескольких одинаковых обмоток вокруг одного магнитопровода широко распространено для создания отдельных, независимых друг от друга вторичных цепей, которые работают в автономном режиме. Их принято называть кернами. Таким способом подключают различные по назначению защиты выключателей или линий (трансформаторов) к токовым цепям одного трансформатора тока.
В устройствах энергетического оборудования работают комбинированные трансформаторы тока с мощным магнитопроводом, используемом при аварийных режимах на оборудовании, и обычным, предназначенным для замеров при номинальных параметрах сети. Обмотки, навитые вокруг усиленного железа, используют для работы защитных устройств, а обычные — для измерений тока или мощности/сопротивления.
Их так и называют:
защитными обмотками, маркируемыми индексом «Р» (релейные);
измерительными, обозначаемыми цифрами метрологического класса точности ТТ, например, «0,5».
Защитные обмотки при нормальном режиме работы трансформатора тока обеспечивают измерение вектора первичного тока с точностью 10%. Их по этой величине так и называют — «десятипроцентными».
Принцип определения точности работы трансформатора позволяет оценить его схема замещения, показанная на картинке. В ней все значения первичных величин условно приведены к действию во вторичных витках.
Схема замещения описывает все процессы, действующие в обмотках с учетом энергии, затрачиваемой на намагничивание сердечника током Iϻ.
Построенная на ее основе векторная диаграмма (треугольник СБ0) свидетельствует, что ток I2 отличается от значений I’1 на величину I нам (намагничивания). По модулю он меньше на отрезок АС (Δ0АБ и ΔАСБ), а по углу отклонен на δ.
Чем выше эти отклонения, тем ниже точность работы трансформатора тока. Чтобы учесть ошибки измерения ТТ введены понятия:
относительной токовой погрешности, выражаемой в процентах по формуле ΔI=(I_2-I’_1)/I’_1 ·100%;
угловой погрешности, вычисляемой длиной дуги АБ в радианах по выражению δрад=I’нам·cos(α+γ).
Абсолютную величину отклонения векторов первичного и вторичного тока определяет отрезок АС, длина которого ΔI’=I’нам·sin(α+γ).
Общепромышленные конструкции трансформаторов тока выпускаются для работы в классах точности, определяемых характеристиками 0,2; 0,5; 1,0; 3 и 10%.
Практическое применение трансформаторов тока
Разнообразное количество их моделей можно встретить как в маленьких электронных приборах, размещенных в небольшом корпусе, так и в энергетических устройствах, занимающих значительные габариты в несколько метров. Они разделяются по эксплуатационным признакам.
Классификация трансформаторов тока
По назначению их разделяют на:
- измерительные, осуществляющие передачу токов на приборы измерения;
- защитные, подключаемые к токовым цепям защит;
- лабораторные, обладающие высоким классом точности;
- промежуточные, используемые для повторного преобразования.
При эксплуатации объектов используют ТТ:
наружного монтажа на открытом воздухе;
для закрытых установок;
встроенные в оборудование;
накладные — надеваемые на проходной изолятор;
переносные, позволяющие делать замеры в разных местах.
По величине рабочего напряжения оборудования ТТ бывают:
высоковольтными (более 1000 вольт);
на значения номинального напряжения до 1 киловольта.
Также трансформаторы тока классифицируют по способу изоляционных материалов, количеству ступеней трансформации и другим признакам.
Для работы цепей учета электрической энергии, измерений и защит линий или силовых автотрансформаторов используются выносные измерительные трансформаторы тока.
На фото ниже показано их размещение для каждой фазы линии и монтаж вторичных цепей в клеммном ящике на ОРУ-110 кВ для силового автотрансформатора.
Эти же задачи выполняют трансформаторы тока на ОРУ-330 кВ, но, учитывая сложность более высоковольтного оборудования, они имеют значительно бо́льшие габариты.
На энергетическом оборудовании часто применяют встроенные конструкции трансформаторов тока, которые размещают прямо на корпусе силового объекта.
Они имеют вторичные обмотки с выводами, размещаемыми вокруг высоковольтного ввода в герметичном корпусе. Кабели от зажимов ТТ проложены к прикрепленным здесь же клеммным ящикам.
Внутри высоковольтных трансформаторов тока чаще всего в качестве изолятора используется специальное трансформаторное масло. Пример такой конструкции показан на картинке для трансформаторов тока серии ТФЗМ, рассчитанной на работу при 35 кВ.
До 10 кВ включительно используются твердые диэлектрические материалы для изоляции между обмотками при изготовлении корпуса.
Примером может служить трансформатор тока марки ТПЛ-10, используемый в КРУН, ЗРУ и других видах распределительных устройств.
Пример подключения вторичной токовой цепи одного из кернов защит REL 511 для выключателя линии 110 кВ демонстрирует упрощенная схема.
Неисправности трансформатора тока и способы их отыскания
У включенного под нагрузку трансформатора тока может нарушиться электрическое сопротивление изоляции обмоток или их проводимость под действием теплового перегрева, случайных механических воздействий либо из-за некачественного монтажа.
В действующем оборудовании чаще всего повреждаются изоляция, что приводит к межвитковым замыканиям обмоток (снижению передаваемой мощности) или возникновению токов утечек через случайно созданные цепи вплоть до КЗ.
С целью выявления мест некачественного монтажа силовой схемы периодически проводятся осмотры работающей схемы тепловизорами. На их основе своевременно устраняются дефекты нарушенных контактов, уменьшается перегрев оборудования.
Проверку отсутствия межвитковых замыканий осуществляют специалисты лабораторий РЗА:
снятием вольтамперной характеристики;
прогрузкой трансформатора от постороннего источника;
замерами основных параметров в рабочей схеме.
Они же анализируют величину коэффициента трансформации.
При всех работах оценивается соотношение между векторами первичных и вторичных токов по величине. Отклонения их по углу не осуществляется из-за отсутствия высокоточных фазоизмерительных устройств, которые применяются при поверках трансформаторов тока в метрологических лабораториях.
Высоковольтные испытания диэлектрических свойств возложены на специалистов лаборатории службы изоляции.
Статьи и схемы
Полезное для электрика
Измерительные трансформаторы тока, принцип работы
Трансформаторы тока (ТТ) предназначены для преобразования тока первичной сети во вторичный, имеющий стандартный уровень 1 или 5 А, используемый в качестве сигнала в системах измерения, учета и релейной защиты.
Для получения достоверной информации о режиме работы первичной сети и величине первичного тока I1, такие трансформаторы обладают особенной конструкцией, в сравнении с силовыми или трансформаторами напряжения .
Принцип работы. Основными составляющими частями ТТ являются магнитопровод, первичная и вторичная обмотки. Все величины относящиеся к первичной цепи ТТ индексируются цифрой 1, для вторичной – 2.
Первичная обмотка включается в контролируемую сеть последовательно, поэтому она должна иметь малое сопротивление, чтобы падение напряжения на ней практически отсутствовало. Вторичная обмотка замыкается на измерительные или другие приборы с малым сопротивлением, поэтому режим работы ТТ считается близким к режиму короткого замыкания.
I1, проходя по виткам обмотки ω1, создает в магнитопроводе переменный магнитный поток Ф1. Под его воздействием Ф1 во вторичной обмотке наводится I2, который в свою очередь создает поток Ф2, направленный встречно Ф1.
Результирующий поток Ф0 представляет из себя разность первичного и вторичного потока, и затрачивается на намагничивание сердечника. Если поток Ф0 выразить через силу намагничивания F0, получим выражение, характеризующее принцип работы ТТ:
〖 F〗_0=F_1-F_2; (1) 〖 I〗_0 ω_1=I_1 ω_1-I_2 ω_2; (2)
Из выражения 2 видно, что I_1 ω_1≠ I_2 ω_2. Разница между этими значениями зависит от величины тока намагничивания I0. По большому счету выражение 2 характеризует погрешность трансформатора тока. Значение приведенного вторичного тока ТТ находится по формуле:
где Z0 – сопротивление ветви намагничивания; Z2 – сопротивление проводов вторичной цепи; Zн – суммированное сопротивление приборов во вторичной цепи; I1 – первичный ток.
Из выражения 3 можно сделать вывод, чем меньше сумма Z_2^’+Z_н^’ по отношению к Z_0, тем меньше погрешность. Поэтому всегда стремятся к малым значениям Z_2^’ и Z_н^’, то есть режим работы должен быть близким к режиму короткого замыкания.
Значения Z2 и Zн не зависят от величины тока проходящего по ним, тогда как Z0 не остается постоянным, а изменяется в зависимости от насыщения магнитопровода, при изменении тока I0. Поэтому погрешность ТТ меняется с изменением тока первичной цепи. Изменение Z_0 имеет нелинейный характер, и зависит от характеристики намагничивания сердечника.
Угловая и токовая погрешность ТТ прямо пропорциональны значению I0 и отношению ω1/ ω2, поэтому на величину погрешности можно повлиять изменением конструкции.
Ток намагничивания I0 зависит от формы магнитопровода и магнитных свойств материала из которого он изготовлен. Чем короче путь магнитного потока, больше активное сечение и выше магнитная проницаемость материала, тем меньший I0 потребуется для создания Ф0.
С другой стороны, уменьшить погрешность можно увеличив количество витков ω_2. В этом случае, для создания необходимой величины Ф2 потребуется меньший I0.
Однако, для сохранения заданного коэффициента трансформации — kтт, потребуется увеличить количество витков первичной обмотки, что приведет к увеличению габаритов и удорожанию оборудования.
На практике же, для компенсации погрешности применяют витковую поправку, когда отматывается часть вторичной обмотки для введения положительной погрешности и применение магнитных шунтов в цепи намагничивания.
Каждый ТТ рассчитан на определенный первичный ток I1н, называемый номинальным. Вторичный ток, как уже было сказано, имеет стандартные значения 1 или 5 А. От его величины зависит номинальная нагрузка вторичной цепи, измеряемая в Ом:
где Sн – полная мощность вторичной обмотки, является каталожной величиной, ВА; I2н – номинальный вторичный ток 1 или 5 А.
Так например, если Sн равна 50 ВА, а вторичный ток 5 А, то номинальная нагрузка вторичной цепи должна иметь сопротивление 2 Ом, чтобы ТТ работал в классе. Если вторичный ток будет равен 1 А, номинальная нагрузка составит 50 Ом, что на порядок выше предыдущего варианта.
Важность такой величины вторичной номинальной нагрузки, заключается в возможности подключения большего числа потребителей, либо длина соединительных вторичных проводов может быть увеличена в разы. Такие ТТ применяются в ОРУ высоковольтных ПС, где широко распространены встроенные ТТ.
В обиходе ТТ не характеризуют только величиной I1 или I2, их принято характеризовать коэффициентом трансформации:
где ω – количество витков обмотки; kтт – имеет стандартные значения, например 100/5, 200/5, 300/5, 600/5 и т. д.
Класс точности ТТ говорит о допустимой погрешности по току в процентах при номинальной вторичной нагрузке. Стандартный ряд классов точности: 0,2; 0,5; 1; 3; 5; 10. После цифровых значений класса точности можно встретить литеры: Р и S.
Р — это русская буква, обозначающая, что данный ТТ или обмотка ТТ используется в устройствах релейной защиты. Как правило, это трансформаторы с классом точности 5Р и 10Р. Буква S указывает, что ТТ имеет расширенный диапазон измерений по первичному току от 1% до 120%, тогда как трансформаторы не промаркированные S, работают с заданной погрешностью в диапазоне нагрузок 5%-120%.
ТТ с классом точности 0,2S и 0,5S используют в схемах коммерческого учета, если маркировка класса точности включает только цифровые значения, такие приборы используют для измерений.
Погрешность ТТ определяется по кривым, построенным в координатах погрешность-нагрузка. Погрешность, как токовая, так и угловая, откладывается по оси ординат. По оси абсцисс откладывается загрузка первичной обмотки ТТ в %.
© Forum220.ru | 2009 — 2015 | Учет электроэнергии Размещение данных материалов на других веб-ресурсах возможно только при наличии обратной гиперссылки на сайт Forum220.ru
Источники: http://electric-220.ru/news/kak_rabotaet_transformator_toka/2017-01-18-1159, http://electricalschool.info/spravochnik/maschiny/1596-transformatory-toka-princip-raboty-i.html, http://forum220.ru/current-transformers.php