Как работает дроссель для люминесцентных ламп

Содержание
  1. Можно ли обойтись без электромагнитного дросселя для работы люминесцентных ламп?
  2. Принцип работы электромагнитного дросселя для люминесцентных ламп
  3. Недостатки ПРА — анализируем особенности конструкции
  4. Видео о том, чем отличается ПРА от ЭПРА
  5. Важный элемент люминесцентных ламп – дроссель: принцип работы, как выбрать
  6. Люминесцентные лампы и их строение
  7. Важный элемент элкетросхемы
  8. Принцип работы балласта
  9. Разнообразие выбора
  10. Дополнительная информация для правильного выбора
  11. Заключение
  12. Рекомендуемые статьи по теме
  13. Полезные материалы
  14. Добавить комментарий Отменить ответ
  15. Электронный и электромагнитный дроссель для люминесцентных ламп
  16. Основные функции
  17. Принцип работы
  18. Тандемное подключение
  19. Особенности дросселей электромагнитного типа
  20. Пускорегулирующий аппарат электронного типа (ЭПРА)
  21. Подключение без балласта

Можно ли обойтись без электромагнитного дросселя для работы люминесцентных ламп?

Потребность люминесцентных ламп в пусковых устройствах обусловлена особенностями конструкции. Лампа представляет собой герметично запаянную трубку, наполненную ртутными парами. Для того чтобы она начала светиться, необходимо получить достаточной силы электрический разряд. Под воздействием ртути разряд начинает излучать ультрафиолет, на который реагирует люминофор, покрывающий внутреннюю поверхность трубки – в итоге получаем свечение в пределах видимого человеческим глазом спектра.

Слабое место такой лампы при всех её остальных достоинствах вроде долгосрочной работы – отрицательное внутреннее сопротивление. Без пускорегулирующего аппарата светиться она не сможет. Для этих целей и служит электромагнитный балласт для люминесцентных ламп.

Принцип работы электромагнитного дросселя для люминесцентных ламп

  • в подготовке катодов к эмиссии электронов, то есть, их подогреве;
  • в создании напряжения для стартового разряда;
  • в ограничении тока, протекающего по устройству, после старта.

Схема дросселя для люминесцентных ламп выглядит следующим образом.
Как работает дроссель для люминесцентных ламп

  1. После включения лампы ток попадает в стартер, представляющий собой группу из баллона и конденсатора, запаянную в отдельный кожух. Баллон заполнен инертным газом. Внутри него размещены биметаллические контакты. Конденсатор прикреплён к выходам этих контактов. Его основное предназначение – подавление помех.

Как работает дроссель для люминесцентных ламп В точечных светильниках для подвесного потолка используются галогенные, светодиодные или обычные лампы накаливания. От выбранного вида источника света будет зависеть порядок установки светильников в потолок.

В аналогичном порядке, но со своими особенностями, проводят монтаж точечных светильников в гипсокартон.

  • Газ внутри баллона ионизируется. Ток протекает по цепи дросселя. Контакты разогреваются вместе с газом — сила тока увеличивается до 0,5 Ампера. Затем нагреваются катоды и электроны, высвободившиеся в процессе, подогревают ртутные пары в трубке лампы.
  • Ионизация завершается вместе с замыканием контактов. Стартер охлаждается и контакты размыкаются. Происходит это мгновенно. Ток перестаёт проходить через цепь стартера и катод.

    Возникающая в ПРА самоиндукция накладывается на амплитудные колебания сети – происходит пробивание газового наполнения трубки – ток вновь устремляется через цепь дросселя и катод.

  • Возникший в ртутных парах разряд вызывает свечение в ультрафиолетовом спектре. Под его воздействием люминофор производит видимый человеку свет.
  • Сопротивление работающей лампы снижается. Это вызывает понижение напряжения на обмотке ПРА (до 110 Вольт).
  • Стартер отключается (его рабочее напряжение 220 Вольт) и остывает.
  • Недостатки ПРА — анализируем особенности конструкции

    У электромагнитных ПРА немало приверженцев. Люминесцентные светильники с этим устройством просты в использовании и стоят недорого. После покупки не требуется никакой дополнительной настройки. Лампа подключается к питанию и начинает работать. А «маленькие недостатки» хозяева ей прощают, так как ценят такие осветительные приборы, прежде всего, за бюджетную цену.

    Но, если проанализировать качество работы лампы с дросселем, выясняется – экономия для домашнего бюджета с таким приобретением весьма сомнительная.

    Как работает дроссель для люминесцентных ламп Подключают терморегулятор для инфракрасного обогревателя с целью контроля и поддержания в автоматическом режиме установленных пользователем температур. Порядок монтажа зависит от количества обогревательных приборов.

    Для защиты постоянно включенного в сеть холодильника применяют стабилизаторы напряжения. О способах подключения другого бытового электроприбора — плиты — можно прочитать тут.

    Дроссельный пусковой механизм очень чувствителен к нестабильности сети. Малейшее колебание напряжения тут же сказывается на лампе. Она начинает мерцать, раздражая зрение и потреблять больше электроэнергии. А ещё в этот момент явственно слышится характерное гудение.

    При такой работе срок эксплуатации оказывается меньшим, чем был заявлен производителем изначально.

    Не меньшее влияние на продолжительность службы оказывают и другие технические особенности конструкции:
    Как работает дроссель для люминесцентных ламп

    • При вспышках перед зажиганием лампы, происходящих из-за несинхронной с частотой сети работы дросселя, его изнашиваемость ускоряется в несколько раз.
    • Четверть мощности осветительного прибора расходуется на разогревание электромагнитного балласта для люминесцентных ламп, что помимо потерь электроэнергии повышает опасность возникновения пожара. Ведь греется стартер иногда до 100 и больше градусов.
    • Вышедший из строя конденсатор ПРА невозможно определить на глаз. Внешне всё выглядит как прежде, хотя коррекция коэффициента мощности в лампе уже не происходит.

    В таком случае потребуются дополнительные знания — как проверить дроссель люминесцентной лампы.

    Факт запрета Европейской комиссией двух классов ПРА из четырёх весьма красноречив. Класс D запрещён в 2004, C – в 2006 году. Сейчас на рынке можно встретить только класс B1 и В2. Это классы с пониженными потерями электроэнергии.

    Конечно, каждый решает для себя сам, отдать ли предпочтение такой классике, как электромагнитный ПРА, или не пожалеть денег и найти ему альтернативу — электронный балласт для люминесцентной лампы. Без сомнения, в определённых случаях технология, отработанная в течение десятилетий, обеспечивает достаточную надёжность и является заслуженно востребованной.

    Видео о том, чем отличается ПРА от ЭПРА

    Важный элемент люминесцентных ламп – дроссель: принцип работы, как выбрать

    Сегодня люминесцентные лампы – это довольно распространенная разновидность источников света. Они дают качественный спектр освещения, что и обеспечило им такую огромную распространенность в современном мире. Подходящий спектр освещения лампы дневного света создают благодаря особой конструкции, одной из главных частей которой является дроссель.

    Как работает дроссель для люминесцентных ламп

    Балласты для лампы дневного света

    Что собой представляет дроссель для люминесцентных ламп, а также особенности его строения вы узнаете из этой статьи.

    Люминесцентные лампы и их строение

    Поскольку во многих помещениях сегодня используются лампы дневного света, то важно знать, из чего они состоят. Эта информация поможет не только правильно эксплуатировать подобные осветительные установки, но и при необходимости ремонтировать их своими руками.

    Обратите внимание! Лампы дневного света сегодня активно используются как для уличного, так и для внутреннего освещения.

    Как работает дроссель для люминесцентных ламп

    Люминесцентные лампы в интерьере

    Для освещения, реализуемого через лампы дневного света характерны следующие достоинства:

    • высокая интенсивность свечения;
    • широкий диапазон распространения света;
    • высокая надежность освещения;
    • возможность работы в разнообразном температурном режиме. В связи с этим такие лампочки можно использовать и для уличного типа освещения;
    • небольшой нагрев корпуса светильника;
    • свечение источника света характеризуется отменными техническими характеристиками;
    • излучение света осуществляется в строго определённом режиме и спектре. При этом свечение здесь максимально близко к дневному типу света;
    • высокая износостойкость. Люминесцентные лампы могут проработать без сбоя до 20 тысяч рабочих часов;
    • отличная производительность.

    Лампы дневного света обладают одной особенностью – их нельзя напрямую подключать в стандартную электрическую сеть. Такая ситуация возникла по следующим причинам:

    • для создания стойкого разряда в такой лампочке необходимо предварительное разогревание электродов, а также подача на них стартового импульса;
    • наличие необходимости ограничения возрастания силы тока, которое имеет место после выхода устройства из рабочего состояния.

    Поэтому в своей конструкции лампы дневного света содержат ПРА (пускорегулирующий аппарат). Он необходим для нормальной работы люминесцентной лампочки. Важным элементом ПРА любого типа (например, ЭПРА) является дроссель.

    Важный элемент элкетросхемы

    Дроссель является необходимой составляющей люминесцентных ламп, необходимый для бесперебойной и длительной работы. Для эффективной работы ламп дневного света нужны не только дроссели, но также стартеры и другие элементы электросхемы.

    Как работает дроссель для люминесцентных ламп

    Внешний вид дросселя

    Дроссель устройство представляет собой индуктивную катушку. В нее вставлен сердечник, имеющий металлическую оправу. Все это сверху сокрыто под кожухом. Вот такое строение и имеют дроссели, которые используются внутри люминесцентных ламп.
    Для ламп дневного света осуществляет подбор балласта по мощности.

    Обратите внимание! Дроссели, подбираемые для люминесцентных ламп, должны иметь с ними одинаковую мощность. Этот параметр обязательно нужно учитывать, чтобы лампочка работала, как надо.

    Назначение дросселей с электросхеме источника света данного типа заключается в ограничении подачи тока до нужного уровня, который необходим каждому отдельному светильнику. Вот для чего в конструкции любой лампы дневного света всегда будет встречаться дроссель. Кроме этого наличие дросселей в конструкции источника света продиктовано следующими причинами:

    • дросселирующее приспособление осуществляет зажигание нити накаливания;
    • дроссели также регулируют мощность тока.

    В конструкции ЭПРА или ПРА другого типа он нужен для выполнения роли балласта. Он берет на себя в электроцепи лишние ватты.
    Таким образом балласт в лампах люминесцентного типа нужен для того, чтобы создавать электроимпульс, с помощью которого происходит поджиг газоразрядной лампы. Именно это устройство создает для данного источника света необходимые условия для работы.

    Принцип работы балласта

    На данный момент существуют два типа дросселей: электрический и электромагнитный. Оба вида имеют идентичное назначение и различаются перечнем достоинств и недостатков, а также тем, в какие ПРА они вставляются. При этом они имеют схожий принцип работы. Рассмотрим принцип работы электромагнитного дросселя. Он имеет следующую схему подключения.

    Как работает дроссель для люминесцентных ламп

    Схема подключения электромагнитного дросселя

    Схема расшифровывается следующим образом:

    • EL – люминесцентная лампа;
    • SF – стартер;
    • LL – электромагнитный балласт (дроссельное устройство);
    • 1 и 2 — спирали лампы;
    • C – конденсатор.

    Теперь можно рассмотреть принцип работы данного типа устройства:

    • в момент подключения к сети через LL и спираль 1 проходит, а также SF начинает проходить ток. Его сила равна 40-50 мА;
    • в колбе SF ионизируется инертный газ, в результате чего сила тока повышается и разогревается биметаллические контакты;
    • далее электроды SF замыкаются. Это приводит к повышению силы тока до 600 мА. После этого его рост ограничивает LL;
    • далее происходит разогрев обеих спиралей и в газовой смеси образуется разряд;
    • таким образом создается ультрафиолетовое излучение, попадающее на внутренний слой люминофора.

    В итоге лампочка начинает светиться. В связи с этим можно заключить, что дроссели в таких устройствах имеют следующий принцип работы – осуществляют на 90 градусов сдвиг фазы перепоенного тока. В результате они поддерживают необходимый уровень тока в электросхеме.
    Такой принцип работы характерен для люминесцентных светильников уличного и внутреннего типа освещения.

    Разнообразие выбора

    Чтобы правильно выбрать балласт для ламп дневного света, нужно знать достоинства и недостатки существующих на рынке моделей. Как уже говорилось выше, на сегодняшний день выделяют следующие виды данной продукции:

    • электромагнитный. Устройство электромагнитного типа встречается в в обычных ПРА.
    • электронный дроссель. Его также еще называют дроссель электрический. На сегодняшний день он считается более совершенным вариантом. Они используются в ЭПРА;

    Рассмотрим эти виды данной продукции более детально.
    Особенностью источников света, где используются электромагнитные виды дроссельных устройств, является их невысокая стоимость, а также простой монтаж и эксплуатация.

    Как работает дроссель для люминесцентных ламп

    Однако их недостатки значительно превышают эти преимущества. К недостаткам электромагнитных дросселей можно отнести следующие моменты:

    • громоздкие размеры;
    • создание шума во время работы;
    • имеется эффект стробирования, что может негативным образом сказываться на качестве освещения;
    • на такой балласт уходит примерно 25% мощности.

    Поэтому такие устройства часто используются для создания уличного типа освещения.

    Обратите внимание! Все перечисленные выше недостатки не содержит электронный дроссель, который используется в ЭПРА.

    Как работает дроссель для люминесцентных ламп

    На сегодняшний день именно ЭПРА наиболее часто используются для включения люминесцентных ламп. ЭПРА стали массово появляться примерно 30 лет назад и на сегодняшний день они уже практически полностью вытеснили электромагнитные типы балластов и ПРА. Это связано с тем, что ЭПРА имеют следующие преимущества в эксплуатации:

    • увеличенная световая отдача, которая стала возможна благодаря высокочастотному разряду;
    • минимизирован эффект стробирования. Это позволило значительно расширить сферу применения данного типа осветительных приспособлений;
    • отсутствие шума;
    • отсутствие фальстарта;
    • увеличение сроков эксплуатации;
    • энергопотребление уменьшилось примерно на 30 %;
    • КПД находиться примерно на уровне 97%;
    • отсутствует необходимость компенсировать реактивную нагрузку.

    Обратите внимание! Некоторые модели ЭПРА обладают способностью управлять мощностью источника освещения. Это стало возможным благодаря регулированию частоты в преобразователе напряжения.

    Как видим, по своим характеристикам ЭПРА является самым выгодным типом устройства для ламп дневного света. Поэтому именно данный тип балласта и следует выбирать для внутреннего устройства люминесцентных лампочек.

    Дополнительная информация для правильного выбора

    Кроме вышеописанных типов балластов, применяемых для эффективной работы ламп дневного света, они могут делиться на различные типы по таким же характеристикам, что и сами лампочки.

    Обратите внимание! Если к источнику света подключить балласт, который не соответствует ему по техническим характеристикам (например, по мощности), то это приведет к поломке всей осветительной установке.

    В связи с этим, выбирая дроссели для люминесцентных ламп, необходимо обращать на технические характеристики, как самих источников света, так и балластов. Эти знания понадобиться в ситуации, ремонт люминесцентного типа источника света будет осуществляться своими руками. В таком случае можно сэкономить на оплате работы профессионального ремонтника и своими руками починить такой осветительный прибор.

    Заключение

    Знания о том, как устроена люминесцентная лампа, и какую роль в ее работе играет балласт, помогут вам использовать эту разновидность источника света максимально долго и, при необходимости, провести замену испорченного элемента электросхемы своими руками.

    Рекомендуемые статьи по теме

    Как работает дроссель для люминесцентных ламп Правильно выбираем автономные датчики для движения с сиреной Как работает дроссель для люминесцентных ламп Блоки питания ручной работы Как работает дроссель для люминесцентных ламп Схемы для самодельных блоков питания светодиодных лент Как работает дроссель для люминесцентных ламп Как выбрать датчик движения для туалета Как работает дроссель для люминесцентных ламп Все что нужно знать о сенсорном регуляторе для освещения Как работает дроссель для люминесцентных ламп Что нужно знать при подборе диммеров для светодиодных ламп

    Полезные материалы

    Добавить комментарий Отменить ответ

    Электронный и электромагнитный дроссель для люминесцентных ламп

    Несмотря на повышение спроса на светодиодные источники света, люминесцентные лампы все еще остаются на пике популярности. Во многом это объясняется относительно небольшой стоимостью осветительного устройства и пускорегулирующего аппарата (далее ПРА), необходимого для его работы. Рассмотрим функциональное назначение и принцип работы последних.

    Основные функции

    Люминесцентные источники света не представляется возможным напрямую включить в электрическую сеть. На это имеются следующие причины:

    • чтобы создать стойкий разряд в лампе люминесцентного типа, необходимо предварительно разогреть ее электроды и подать на них стартовый импульс;
    • поскольку источники света газоразрядного типа обладают отрицательным дифференциальным сопротивлением, для них характерно после выхода в рабочий режим возрастание силы тока. Его необходимо ограничивать, чтобы не допустить выхода источника света из строя.

    Исходя из описанных выше причин, необходимо использовать ПРА.

    Как работает дроссель для люминесцентных ламп

    ПРА электромагнитного типа

    Принцип работы

    Рассмотрим принцип работы электромагнитного дросселя на примере типичной схемы подключения для ламп газоразрядного типа .

    Как работает дроссель для люминесцентных ламп

    Типичная схема подключения

    На схеме обозначены:

    • EL – лампа газоразрядного (люминесцентного) типа;
    • SF – стартер, он представляет собой устройство состоящее из колбы, наполненной инертным газом, внутри нее находятся контакты из биметалла. Параллельно к колбе установлен конденсатор;
    • LL –дроссель (электромагнитный);
    • спирали лампы (1 и 2);
    • C – конденсатор (компенсирует реактивную мощность), его емкость зависит от мощности лампы, ниже показана таблица соответствия.

    Мощность газоразрядного источника (Вт)

    Емкость конденсатора (мкФ)

    Встречаются устройства, в схемах которых отсутствует компенсирующий конденсатор, это недопустимо, поскольку реактивная нагрузка приводит к следующим негативным последствиям:

    • происходит увеличение потребляемой мощности, что приводит к повышенному расходу электроэнергии;
    • существенно сокращается ресурс оборудования.

    Теперь перейдем непосредственно к принципу работы, приведенной выше типовой схемы. Условно ее можно разделить на следующие этапы:

    • при подключении к электросети, через цепь дроссель «LL» – спираль « 1» – стартер «SF» – спираль «2» начинает проходить ток, сила которого от 40 до 50 мА;
    • под воздействием этого процесса в колбе стартера ионизируется инертный газ, что приводит к повышению силы тока и разогреву биметаллических контактов;
    • нагревшиеся электроды в стартере замыкаются, это вызывает резкое повышение силы тока, примерно до 600 мА. Дальнейший его рост ограничивает индуктивность дросселя;
    • за счет увеличившейся силы тока в цепи происходит разогрев спиралей (1 и 2), в результате чего ими излучаются электроны, разогревается газовая смесь, что приводит к разряду ;
    • под воздействием разряда возникает ультрафиолетовое излучение, которое попадает на покрытие из люминофора. В результате он светится в видимом спектре;
    • когда источник света «зажигается», его сопротивление уменьшается, соответственно, понижается напряжение на дросселе (до 110 В);
    • контакты стартера остывают и размыкаются.

    Тандемное подключение

    Ниже показана схема, где две лампы люминесцентного типа включены последовательно.

    Как работает дроссель для люминесцентных ламп

    Схема тандемного подключения

    Принцип работы у представленной схемы не отличается от типового подключения, единственная разница — в параметрах стартеров. При двухламповом подключении применяются стартеры, у которых «пробивное» напряжение 110 В (тип S2), для однолампового – 220 В (тип S10).

    Как работает дроссель для люминесцентных ламп

    Стартеры S10 и S2 на 220 и 110 В соответственно

    Особенности дросселей электромагнитного типа

    Говоря об особенностях электромагнитных ПРА, необходимо заметить, что единственные преимущества этих устройств – относительно невысокая цена, простая эксплуатация и несложный монтаж. Недостатков у классической схемы подключения значительно больше :

    • наличие громоздкого и «шумного» дросселя;
    • стартеры, к сожалению, не отличаются надежностью;
    • наличие эффекта стробирования (лампа мерцает с частотой 50 Гц) вызывает повышенную утомляемость у человека, что приводит к снижению его работоспособности;
    • при вышедших из строя стартерах проявляется фальстарт, то есть лампа, перед тем как «зажечься», несколько раз мигает, это снижает рабочий ресурс источника света;
    • примерно около 25% мощности расходуется на электромагнитный балласт, в результате существенно снижается КПД.

    Использование электронного ПРА позволяет избавиться от большинства из перечисленных выше недостатков.

    Пускорегулирующий аппарат электронного типа (ЭПРА)

    Массово ЭПРА появились не так давно, около тридцати лет назад, в настоящее время они практически вытеснили электромагнитные устройства. Этому способствовали многочисленные преимущества перед классической схемой включения, назовем основные из них:

    • повышение световой отдачи ламп люминесцентного типа благодаря высокочастотному разряду;
    • отсутствие шума, характерного для низкочастотных электромагнитных дросселей;
    • снижение эффекта стробирования значительно расширило сферу применения;
    • отсутствие фальстарта увеличивает срок эксплуатации люминесцентных источников;
    • КПД может достигать 97%;
    • по сравнению с ПРА электромагнитного типа, энергопотребление снижено на 30%;
    • нет необходимости компенсировать реактивную нагрузку;
    • в некоторых моделях электронных устройств предусмотрено управление мощностью источника освещения, это производится регулировкой частоты в преобразователе напряжения.

    Как работает дроссель для люминесцентных ламп

    ЭПЛА внешний вид и внутренне устройство

    Стоит также отметить: благодаря отсутствию громоздкого дросселя, стало возможным уменьшить размеры электронного балласта, что позволило разместить его в цоколе. Это существенно расширяет сферу применения, делая возможным использование в осветительных приборах вместо источников, в которых используется нить накала.

    Как работает дроссель для люминесцентных ламп

    ЭПРА, размещенный в цоколе

    В качестве примера приведем схему простого электронного балласта, типичную для большинства недорогих устройств.

    Как работает дроссель для люминесцентных ламп

    Схема типичного ЭПРА

    • номиналы резисторов: R1 и R2 -15 Ом, R3 и R4 – 2,2 Ом, R5 – 620 кОм, R6 – 1,6 Мом;
    • используемые конденсаторы: C1 – 47 нФ 400 В, С2 – 6800 пФ 1200 В, С3 – 2200пФ, С4 – 22 нФ, С5 – 4,7 мкФ 350 В;
    • диоды: VD1-VD7 – 1N400;
    • транзисторы: Т1 и Т2 – 13003;
    • диодный симистор VS – DB3.

    Завершая тему ЭПРА, необходимо заметить — их существенным недостатком является относительно высокая стоимость качественных устройств. Что касается недорогих моделей, надежность таковых оставляет желать лучшего.

    Подключение без балласта

    При необходимости газоразрядные источники света возможно включить в сеть питания без электромагнитного или электронного балласта. Схема такого включения показана ниже.

    Как работает дроссель для люминесцентных ламп

    Бездроссельный способ подключения

    Для реализации такого подключения понадобится:

    • лампа люминесцентного типа – 40 Вт и накаливания – 60 Вт (последняя будет работать как балластное сопротивление);
    • два конденсатора 0,47 мкФ 400 В (играют роль умножителя);
    • диодный мост КЦ404А или аналогичный, можно использовать четыре диода, рассчитанных под ток не менее 1 А и обратное импульсное напряжение 600 В.

    Данная схема проигрывает по своим параметрам подключению при помощи электромагнитного дросселя и ЭПРА. Она приведена для ознакомления.

    Источники: http://elektrik24.net/osvetitelnye-pribory/lampy/energosberegayushhie/lyuminescentnye/drossel.html, http://1posvetu.ru/ustrojstva/drossel-dlya-lyuminestsentnyh-lamp.html, http://www.asutpp.ru/osveshhenie/drossel-dlya-lyuminescentnyx-lamp.html

    Рейтинг
    ( Пока оценок нет )
    Всё об электрике в доме
    Добавить комментарий