Как работает частотный преобразователь для электродвигателя

Структура частотного преобразователя

Частотный преобразователь в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока. Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен. При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор. Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.

Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в изготовлении и эксплуатации.

Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток).

Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.

Известно, что регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.

Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации.
Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

Как работает частотный преобразователь для электродвигателя

неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики.

Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Закон изменения напряжения зависит от характера момента нагрузки . При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте :

Как работает частотный преобразователь для электродвигателя

Для вентиляторного характера момента нагрузки это состояние имеет вид:

Как работает частотный преобразователь для электродвигателя

При моменте нагрузки, обратно пропорциональном скорости:

Как работает частотный преобразователь для электродвигателя

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя.

Преимущества использования регулируемого электропривода в технологических процессах

Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.

Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора.

Перспективность частотного регулирования наглядно видна из рисунка 1

Таким образом, при дросселировании поток вещества, сдерживаемый задвижкой или клапаном, не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества.

Структура частотного преобразователя

Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.

Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.

Принцип работы преобразователя частоты

Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора. системы управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв (рис.2). Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.

Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.

Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.

Как работает частотный преобразователь для электродвигателя

Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики. Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Структура частотного преобразователя

Большинство современных преобразователей частоты построено по схеме двойного преобразования. Входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в звене постоянного тока B, сглаживается фильтром состоящим из дросселя и конденсатора фильтра Cв, а затем вновь преобразуется инвертором АИН в переменное напряжение изменяемой частоты и амплитуды. Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления. Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.

Как работает частотный преобразователь для электродвигателя

Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечивается в середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления СУИ обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя.Амплитуда и частота напряженияопределяются параметрами модулирующей синусоидальной функции. Таким образом, на выходе преобразователя частоты формируется трехфазное переменное напряжение изменяемой частоты и амплитуды.

Как работает частотный преобразователь для электродвигателя

Частотный преобразователь — виды, принцип действия, схемы подключения

Как работает частотный преобразователь для электродвигателяРотор любого электродвигателя приводится в движение под действием сил, вызванных вращающимся электромагнитным полем внутри обмотки статора. Скорость его оборотов обычно определяется промышленной частотой электрической сети.

Ее стандартная величина в 50 герц подразумевает совершение пятидесяти периодов колебаний в течение одной секунды. За одну минуту их число возрастает в 60 раз и составляет 50х60=3000 оборотов. Такое же число раз проворачивается ротор под воздействием приложенного электромагнитного поля.

Если изменять величину частоты сети, приложенной к статору, то можно регулировать скорость вращения ротора и подключенного к нему привода. Этот принцип заложен в основу управления электродвигателями.

Виды частотных преобразователей

По конструкции частотные преобразователи бывают:

1. индукционного типа;

Асинхронные электродвигатели, выполненные по схеме с фазным ротором и запущенные в режим генератора, являются представителями первого вида. Они при работе обладают низким КПД и отмечаются маленькой эффективностью. Поэтому они не нашли широкого применения в производстве и используются крайне редко.

Способ электронного преобразования частоты позволяет плавно регулировать обороты как асинхронных, так и синхронных машин. При этом может быть реализован один из двух принципов управления:

1. по заранее заданной характеристике зависимости скорости вращения от частоты (V/f);

2. метод векторного управления.

Первый способ является наиболее простым и менее совершенным, а второй используется для точного регулирования скоростей вращения ответственного промышленного оборудования.

Особенности векторного управления частотным преобразованием

Отличием этого способа является взаимодействие, влияние устройства управления преобразователя на «пространственный вектор» магнитного потока, вращающийся с частотой поля ротора.

Алгоритмы для работы преобразователей по этому принципу создаются двумя способами:

1. бессенсорного управления;

Первый метод основан на назначении определенной зависимости чередования последовательностей широтно-импульсной модуляции (ШИМ) инвертора для заранее подготовленных алгоритмов. При этом амплитуда и частота напряжения на выходе преобразователя регулируются по скольжению и нагрузочному току, но без использования обратных связей по скорости вращения ротора.

Этим способом пользуются при управлении несколькими электродвигателями, подключенными параллельно к преобразователю частоты. Потокорегулирование подразумевает контроль рабочих токов внутри двигателя с разложением их на активную и реактивную составляющие и внесение корректив в работу преобразователя для выставления амплитуды, частоты и угла для векторов выходного напряжения.

Это позволяет повысить точность работы двигателя и увеличить границы его регулирования. Применение потокорегулирования расширяет возможности приводов, работающих на малых оборотах с большими динамическими нагрузками, такими как подъемные крановые устройства или намоточные промышленные станки.

Использование векторной технологии позволяет применять динамическую регулировку вращающихся моментов к трехфазным асинхронным двигателям.

Принципиальную упрощенную электрическую схему асинхронного двигателя можно представить следующим видом.

Как работает частотный преобразователь для электродвигателя

На обмотки статора, обладающие активным R1 и индуктивным X1 сопротивлениями, приложено напряжение u1. Оно, преодолевая сопротивление воздушного зазора Хв, трансформируется в обмотку ротора, вызывая в ней ток, который преодолевает ее сопротивление.

Векторная диаграмма схемы замещения

Ее построение помогает понять происходящие процессы внутри асинхронного двигателя.

Как работает частотный преобразователь для электродвигателя

Энергия тока статора разделяется на две части:

iµ — потокообразующую долю;

iw — моментообразующую составляющую.

При этом ротор обладает активным сопротивлением R2/s, зависящим от скольжения.

Для бессенсорного управления измеряются:

По их значениям рассчитывают:

iµ — потокообразующую составляющую тока;

iw — моментообразующую величину.

В алгоритм расчета уже заложили электронную эквивалентную схему асинхронного двигателя с регуляторами тока, в которой учтены условия насыщения электромагнитного поля и потерь магнитной энергии в стали.

Обе этих составляющих векторов тока, отличающиеся по углу и амплитуде, вращаются совместно с системой координат ротора (ω) и пересчитываются в стационарную систему ориентации по статору (α, β).

По этому принципу подстраиваются параметры частотного преобразователя под нагрузку асинхронного двигателя.

Принцип работы частотного преобразователя

В основу этого устройства, которое еще называют инвертором, заложено двойное изменение формы сигнала питающей электрической сети.

Как работает частотный преобразователь для электродвигателя

Вначале промышленное напряжение подается на силовой выпрямительный блок с мощными диодами, которые убирают синусоидальные гармоники, но оставляют пульсации сигнала. Для их ликвидации предусмотрена батарея конденсаторов с индуктивностью (LC-фильтр), обеспечивающая стабильную, сглаженную форму выпрямленному напряжению.

Затем сигнал поступает на вход преобразователя частоты, который представляет собой мостовую трехфазную схему из шести силовых транзисторов серии IGBT или MOSFET с диодами защиты от пробоя напряжений обратной полярности. Используемые ранее для этих целей тиристоры не обладают достаточным быстродействием и работают с бо́льшими помехами.

Для включения режима «торможения» двигателя в схему может быть установлен управляемый транзистор с мощным резистором, рассеивающим энергию. Такой прием позволяет убирать генерируемое двигателем напряжение для защиты конденсаторов фильтра от перезарядки и выхода из строя.

Способ векторного управления частотой преобразователя позволяет создавать схемы, осуществляющие автоматическое регулирование сигнала системами САР. Для этого используется система управления:

2. ШИМ (широтного импульсного моделирования).

Метод амплитудного регулирования основан на изменении входного напряжения, а ШИМ — алгоритма переключений силовых транзисторов при неизменном напряжении входа.

Как работает частотный преобразователь для электродвигателя

При ШИМ регулировании создается период модуляции сигнала, когда обмотка статора подключается по строгой очередности к положительным и отрицательным выводам выпрямителя.

Поскольку частота такта генератора довольно высокая и расположена в пределах 2÷15 кГц, то в обмотке электродвигателя, обладающего индуктивным сопротивлением, происходит их сглаживание до синусоиды нормального вида.

Как работает частотный преобразователь для электродвигателя

Способы ШИМ управления позволяют максимально исключить потери энергии и обеспечивают высокий КПД преобразования за счет одновременного управления частотой и амплитудой. Они стали доступны благодаря развитию технологий управления силовыми запираемыми тиристорами серии GTO или биполярных марок транзисторов IGBT, обладающих изолированным затвором.

Принципы их включения для управления трехфазным двигателем показаны на картинке.

Как работает частотный преобразователь для электродвигателя

Каждый из шести IGBT-транзисторов V1÷6 подключается по встречно-параллельной схеме к своему диоду обратного тока D1÷6. При этом через силовую цепь каждого транзистора проходит активный ток асинхронного двигателя, а его реактивная составляющая направляется через диоды.

Для ликвидации влияния внешних электрических помех на работу инвертора и двигателя в конструкцию схемы преобразователя частоты может включаться помехозащитный фильтр. ликвидирующий:

наводимые работающим оборудованием электрические разряды.

Их возникновение сигнализирует контроллер, а для уменьшения воздействия используется экранированная проводка между двигателем и выходными клеммами инвертора.

С целью улучшения точности работы асинхронных двигателей в схему управления частотных преобразователей включают:

ввода связи с расширенными возможностями интерфейса;

информационный Led-дисплей, отображающий основные выходные параметры;

тормозной прерыватель и встроенный ЭМС фильтр;

систему охлаждения схемы, основанную на обдуве вентиляторами повышенного ресурса;

функцию прогрева двигателя посредством постоянного тока и некоторые другие возможности.

Эксплуатационные схемы подключения

Частотные преобразователи создаются для работы с однофазными или трехфазными сетями. Однако, если есть промышленные источники постоянного тока с напряжением 220 вольт, то от них тоже можно запитывать инверторы.

Как работает частотный преобразователь для электродвигателя

Трехфазные модели рассчитываются на напряжение сети 380 вольт и выдают его на электродвигатель. Однофазные же инверторы питаются от 220 вольт и на выходе выдают три разнесенных по времени фазы.

Схема подключения частотного преобразователя к двигателю может быть выполнена по схемам:

Обмотки двигателя собираются в «звезду» для преобразователя, запитанного от трехфазной сети 380 вольт.

Как работает частотный преобразователь для электродвигателя

По схеме «треугольник» собирают обмотки двигателя, когда питающий его преобразователь подключен к однофазной сети 220 вольт.

Как работает частотный преобразователь для электродвигателя

Выбирая способ подключения электрического двигателя к преобразователю частоты надо обращать внимание на соотношение мощностей, которые может создать работающий двигатель на всех режимах, включая медленный, нагруженный запуск, с возможностями инвертора.

Нельзя постоянно перегружать частотный преобразователь, а небольшой запас его выходной мощности обеспечит ему длительную и безаварийную работу.

Статьи и схемы

Полезное для электрика

Назначение и принцип работы преобразователя частоты для асинхронных двигателей

Двигатель асинхронного типа используется повсеместно. Основное предназначение – преобразование электричества в механическую силу. Электродвигатель — своего рода противоположность генератора.

Как работает частотный преобразователь для электродвигателя

Учитывая особенность того, что рассматриваемый механизм работает от электричества, особые требования предъявляются к показателям электроэнергии. Часто можно встретить ситуацию, когда в цепи присутствует частотный преобразователь, который создан специально для асинхронного типа двигателя.

В системе питания, созданной для асинхронного двигателя, рассматриваемый аппарат служит для изменения тока с 1 или 3 фазами, который приходит от сети питания и имеет частоту 50 Гц, в трехфазный ток, показатель частоты от различных условий может быть от 1 до 800 Гц.

Кроме вышеприведенной информации, стоит уточнить следующее:

  1. Для оборудования. которое используется в промышленности, проводят выпуск частотного преобразователя, имеющий электроиндукционный тип. Они представляют собой в некотором роде асинхронный двигатель, который имеет фазный ротор. Определенный режим позволяет работать оборудованию в режиме генератора-преобразователя.
  2. Изменение частоты входного тока используются для изменения скорости вращения выходного вала двигателя. Совершенные механизмы регулирования представлены векторным типом, практически только подобные варианты исполнения присутствуют в продаже.

Приобрести также можно варианты исполнения для бытового использования.

Устройство и принцип работы

Как работает частотный преобразователь для электродвигателя

Рассматриваемое устройство состоит из следующих элементов:

  1. Мост постоянного тока выступает в качестве выпрямителя. Именно он проводит преобразование, к примеру, промышленного тока с генератора в постоянный.
  2. Инвертор проводит создание переменного тока. При этом, есть возможность контролировать частоту и амплитуду.
  3. Также, в конструкции есть тиристоры или транзисторы. которые обеспечивают подачу рабочего тока к электродвигателю. Они выступают в качестве электрических ключей.
  4. В управляющей части установлен микропроцессор, который проводит управление работой установленных ключей. Также, микропроцессор выполняет ряд других задач: проводит защиту системы, контролирует выходные параметры, диагностирует состояние подаваемого тока.

Многие построены на основе двойного преобразования.

Можно выделить 2 основных класса:

  1. С созданием промежуточного звена.
  2. С образованием непосредственной связи.

2 вышеприведенных класса имеют свои особенности, которые определяют возможность и целесообразность их использования тех или в иных условиях.

Непосредственная связь обуславливается тем, что преобразователь представлен выпрямителем управляемого типа. Используемая система управления проводит отпирание группы тиристоров и также проводит подвод напряжения к обмотке электродвигателя.

В данном случае, напряжение преобразуется путем вырезания синусоид из входного тока. Проведенные измерения показывают, что получаемая частота находится в приблизительном промежутке от 0 до 30 Гц. Использовать подобный вариант исполнения нельзя в регулируемых приводах.

Для того, чтобы использовать незапираемые тиристоры, нужно организовывать сложные системы управления, которые значительно повышают стоимость создаваемой цепи.

Как работает частотный преобразователь для электродвигателя

При выходе синусоида с непосредственной связью, приводит к следующему:

  1. Появляется гармоник.
  2. Происходят потери в самом электродвигателе.
  3. Происходит перегрев электродвигателя.
  4. Значительно снижается показатель момента.
  5. Создаются сильные помехи.

Кроме этого, компенсаторы значительно повышают стоимость цепи, ее габариты и вес. Включение дополнительного элемента в цепь также приводит к уменьшению показателя КПД из-за возникающих потерь.

Современные цепи питания часто создаются при использовании преобразователя, который имеет промежуточное звено.

В данном случае, проводится процедура, предусматривающая двойное преобразование электрического тока:

  1. Изначально. входное напряжение синусоидального типа с неизменной частотой и амплитудой преобразуется при помощи выпрямителя.
  2. Используютсяспециальные фильтры. которые сглаживают показатели.
  3. Инвертор на выходе проводит преобразование энергии с изменяемым показателем амплитуды и частоты.

Как правило, процедура двойного преобразования приводит к значительному снижению показателя КПД, вследствие чего также ухудшаются показатели соотношения массы и габаритов.

К основным достоинствам преобразователей частоты, которые работают как тиристор, можно отнести следующее:

  1. Возможна работа в системе с большими показателями тока.
  2. Система может быть использована при высоких показателях напряжения.
  3. Есть устойчивость к длительному воздействию большой нагрузки и импульсного воздействия.
  4. Более высокий показатель КПД. который достигает 98%.

Данные особенности являются основными отличительными признаками работы двух типов преобразователей.

Технические характеристики

Как работает частотный преобразователь для электродвигателяИспользовать частотные преобразователи следует только с учетом эксплуатационных характеристик. К основным техническим характеристикам, на которые нужно обратить внимание, можно отнести:

  1. Диапазон напряжения подаваемого тока. Существуют различные варианты исполнения, которые могут работать при напряжении от 100 до 120 В, от 200 до 240 В. Этот показатель является определяющим при выборе наиболее подходящей модели.
  2. Номинальная мощность подключаемого в цепи электродвигателя. Как правило, показатель измеряется в кВт.
  3. Полная мощность электродвигателя.
  4. Номинальный выходной ток.
  5. Выходное напряжение зачастую не больше показателя напряжения от источника питания, но может быть и меньше.
  6. Диапазон выходной частоты.
  7. Показатель допустимой силы тока на входе.
  8. Частота электричества при входе.
  9. Максимальные отклонения от показателей, которые допустимы при тех или иных случаях.

Подобные параметры должны быть указаны в спецификации преобразователя частот. Если, к примеру, не учесть напряжение подаваемого тока, рассматриваемое устройство будет испорчено.

Подключение преобразователя частот – пошаговая инструкция

Как работает частотный преобразователь для электродвигателя

Провести подключение преобразователя частоты можно различными схемами. Все зависит от того, с какой целью рассматриваемый элемент включается в сеть, к примеру, для более легкого старта или регулировки частоты вращения.

Довольно простой схемой подключения частотника можно назвать размещение устройства автоматического выключения перед ним. Подобное устройство должно быть адоптировано для работы с током, величина его должна составлять величину номинального показателя потребляемого тока электродвигателя.

Стоит отметить, что многие модели частотников могут работать с трехфазной сетью, поэтому можно выбрать обычный трехфазный автомат. На момент возникновения короткого замыкания, одна из фаз проводит обесточивание других. Если же преобразователь частоты рассчитан на однофазную сеть, стоит выбрать выключатель, который рассчитан на утроенный ток одной фазы.

Частотники рассчитаны исключительно на прямое включение в сеть.

Дальнейшая работа по подключению заключается в присоединении фазных проводов к определенным клеммам электродвигателя. Также, проводится включение внешнего тормозного резистора в цепь. Кроме этого, в сеть можно включить вольтметр для измерения напряжения в цепи на выходе после преобразователя.

Как правило, современные варианты исполнения частотников имеют подробную инструкцию того, каким образом они должны быть включены в сеть. Подобную информацию стоит учитывать при создании цепи подключения электродвигателя к источнику питания.

Выбор частотного преобразователя

Как работает частотный преобразователь для электродвигателя

Изначальной задачей каждого производителя можно назвать продать свою продукцию. Именно поэтому, следует обратить внимание на нижеприведенные нюансы правильного выбора:

  1. Скалярный или векторный метод управления. Современные варианты исполнения зачастую имеют векторные методы управления, однако особый режим работы позволяет переключиться на скалярный метод управления. Найти новый частотник без векторного метода управления практически невозможно.
  2. Мощностной ряд. Стоит помнить о том, что мощность потребителя энергии – важный показатель, на который стоит обращать внимание.
  3. Входное напряжение, а точнее допустимый диапазон, определяет то, при каком напряжении преобразователь частоты может работать без сбоев. При этом, важно понять, что падение показателя приведет к остановке частотника, увеличение – к выходу из строя всего оборудования. Поэтому следует обеспечить работу при постоянном показателе входного напряжения.
  4. Диапазон регулировки – также важный показатель, особенно при использовании двигателей, которые работают при высоких показателях номинальной частоты.
  5. Как организовано управление. Современные варианты исполнения имеют специальные пульты, при помощи которых можно вводить необходимые значения.
  6. Срок гарантии косвенно говорит о надежности техники. Однако, стоит помнить о том, что выход из строя при подаче тока с неправильными номинальными показателями нельзя назвать гарантийным случаем.

Вышеприведенные особенности следует учитывать при выборе преобразователя частоты.

Обзоры моделей

Выделим следующие модели рассматриваемого оборудования:

Как работает частотный преобразователь для электродвигателя

Стоимость этой модели составляет 15 000 рублей. Значение мощности 0,75 кВт, выходного тока 2,1 А. Вес подобного блока составляет 1,5 кг. Блок компактный и прост в использовании. Данный вариант исполнения имеет встроенный блок управления.

Как работает частотный преобразователь для электродвигателя

Стоимость около 24 000 рублей. Значение мощности 1,1 кВт, выходного тока 3,3. Вес блока составляет 5 кг. Довольно дорогая модель, несмотря на небольшое повышение выходных показателей.

Как работает частотный преобразователь для электродвигателя

Мощный блок, который может работать при 90 кВт. Стоимость около 250 000 рублей. Выходной ток 176 А. Установка имеет вес 50 кг. Рассматриваемая установка одна из самых дорогих. Имеет довольно большие габаритные размеры, несколько напоминает шкаф.

Существует огромное количество моделей, их стоимость зачастую зависит от эксплуатационных характеристик.

  • Как работает частотный преобразователь для электродвигателя

Назначение и подключение пусковых конденсаторов для электродвигателей

  • Как работает частотный преобразователь для электродвигателя

    Как правильно выбрать автоматические выключатели?

  • Как работает частотный преобразователь для электродвигателя

    Как сделать импульсный блок питания своими руками?

    Источники: http://www.artesk.ru/invertor.html, http://electricalschool.info/elprivod/1658-chastotnyjj-preobrazovatel-vidy-princip.html, http://slarkenergy.ru/oborudovanie/engine/preobrazovatel-chastoty.html

  • Рейтинг
    ( Пока оценок нет )
    Всё об электрике в доме
    Добавить комментарий