- Как подключить трехфазный электродвигатель в сеть 220В – схемы и рекомендации
- Подбираем конденсатор
- Схемы подключения
- Как определить выводы фазных обмоток
- Техническое состояние двигателя
- Заключение по теме
- Подключение трехфазного двигателя к однофазной сети
- Начала и концы обмоток (различные варианты)
- Схемы подключения трехфазного двигателя в однофазную сеть
- Самостоятельное подключение трехфазного двигателя к однофазной сети – сложно, но осуществимо
- Рассмотрим вариант штатного подключения
- Подключение трехфазного двигателя к сети 220 вольт (одна фаза)
- Конденсаторный способ включения
- Реверсное подключение трехфазного двигателя через магнитный пускатель
Как подключить трехфазный электродвигатель в сеть 220В – схемы и рекомендации
Наличие электродвигателя на загородном участке для многих вещь необходимая. Но асинхронные электрические моторы требуют подключения к трехфазной сети напряжением 380 вольт. А что делать, если на участок подведена однофазная сеть? Есть ли выход из этой ситуации? Никаких проблем в этом нет, просто в схему подключения необходимо установить конденсатор, подобранный точно под мощность самого двигателя. Итак, давайте рассмотрим, как подключить трехфазный электродвигатель в сеть 220В?
Подбираем конденсатор
В первую очередь необходимо подобрать сам конденсатор. Существует определенная формула, где обозначена зависимость емкости конденсатора от мощности электродвигателя. Вот эта формула:
- C – это емкость конденсатора (основной его показатель);
- P – мощность движка.
По сути, получается так, что на каждые 100 ватт мощности должно приходиться семь микрофарад электрической емкости. К примеру, у вас в наличии электрический 3-х фазный двигатель мощностью 600 Вт – это 0,6 кВт. Значит, вам для подключения потребуется конденсатор емкостью 42 мкФ. Конечно, стандартного такого конденсатора не существует, поэтому можно установить параллельно друг другу несколько конденсаторов меньшей емкости, но суммарно они должны обеспечить именно 42 мкФ.
Обратите внимание, что для электродвигателей необходимо подбирать конденсаторы, напряжение которых должно быть минимум в 1,5 раза больше, чем напряжение в сети.
Какие конденсаторы лучше всего использовать для подключения трехфазного электродвигателя? Каких-то жестких ограничений в данном случае нет. Здесь важна именно емкость прибора и его напряжение. Но чаще всего используют конденсаторы марки БГТ, КБГ, МБГЧ. Если бумажных конденсаторов нет в наличии, то можно применять любые электролитические. Здесь важно хорошо провести изоляцию соединения выводов приборов между собой.
Схемы подключения
Существуют две основные схемы, по которым производится подключение электрического мотора к сети переменного тока 220 вольт:
Необходимо отметить тот факт, что любое изменение в подключениях электродвигателей несет за собой снижение их мощности. И если потери этого показателя в схеме треугольник составляют всего лишь 30%, то в схеме звезда уже 50%. Поэтому специалисты рекомендуют использовать именно треугольник. Хотя при соединении звездой электродвигатель работает мягко и плавно. Что касается частоты вращения ротора, то при подключении к сети 220 вольт этот показатель практически не изменяется.
Чтобы было понятно, как выглядят оба вида подключения, предлагаем посмотреть на два нижних рисунка, где позиция (а) это принципиальная электрическая схема, а (б) это монтажная схема подключения. Первый рисунок – это соединение треугольник, второй – звезда.
Сразу оговоримся, что переделать подключение с 380 на 220 вольт можно двигатель, у которого из клеммной коробки торчит шесть концов. При этом на принципиальной схеме концы обозначаются по-разному. Старое обозначение (оно среди электриков используется и сейчас) – это начало обмоток С1, С2, С3, конец – это С4, С5, С6. Согласно ГОСТа 26772-85 буквенные обозначение были изменены на начало обмоток – U1, V1, W1, конец – U2, V2, W2.
Чтобы провести пуск 3-фазного электродвигателя малой мощности рабочего конденсатора будет достаточно. Но если мощность мотора превышает 1,5 кВт, то он или не запустится вообще, или запуск будет производиться медленно и трудно. Поэтому рекомендуется установить в схему еще один конденсатор – пусковой. Он будет отвечать только за пуск 3-х фазного двигателя. В самой его работе он участвовать не будет, то есть, тут же отключится после завершения запуска. На это уходит две-три секунды.
Внимание! Для пускового конденсатора необходим электролитический вид большой емкости. У пускового она должна быть в три раза больше, чем у рабочего. Оптимальный вариант – это электролитический конденсатор марки ЭП.
Вот снизу схема подключения, где установлен пусковой конденсатор (Cn).
Как определить выводы фазных обмоток
Обычно выводы фазных обмоток нумеруются, поэтому определить какой из них начало, а какой конец несложно. Но после перемотки не всегда эта маркировка присутствует, поэтому придется своими руками определить, где какой конец.
Сначала необходимо определить концы одной обмотки (фазы). Для этого от розетки необходимо отвести два провода:
- первый подключается к любому концу, торчащему из электродвигателя;
- второй к контрольной лампочке.
Второй провод от лампочки подсоединяется поочередно к пяти оставшимся концам обмоток. Как только лампочка загорелась, значит, вы нашли два конца одной обмотки. Остается лишь точно так же определить оставшиеся две статорные обмотки и найти их концы. Обязательно в этой процедуре проводится маркировка.
Теперь необходимо определить, какие из торчащих проводов являются началом, а какие концом. Если ваш 3-х фазный двигатель имеет мощность не более 5 кВт, то можно воспользоваться методом подбора. К примеру, соединим все торчащие концы по схеме звезда, установив в нее рабочий конденсатор, подобранный заранее. Теперь включаем двигатель, если он запустился плавно и без шума, то вы попали в точку. В том случае, если мотор сильно загудел, а ротор не может набрать необходимые обороты, то были перепутаны концы. Поэтому их стоит поменять местами, к примеру, C1 с C4. И снова провести запуск.
Если и в этом случае мотор гудит и не вращается, то отключите его, установите концы в первоначальное положение, а поменяйте между собой С2 и С5. То же самое и с третьей позицией. То есть, производится проверка всех схем подключения, пока не найдется правильная, при которой 3-х фазный двигатель будет работать в штатном режиме.
Внимание! Проводя подбор статорных (фазных) обмоток, необходимо соблюдать меры безопасности. Все дело в том, что в электродвигатели есть стальной магнитопровод, поэтому на концах фазных обмоток может появиться напряжение большой величины. Поэтому при работе необходимо держать провода только за изолированные части.
Техническое состояние двигателя
В процессе эксплуатации электродвигателя необходимо проводить технический осмотр, особенно когда появляется нетрадиционный шум. Основная его причина – выход из строя подшипников, на которых закреплен ротор. Иногда обычная промывка подшипников в бензине дает положительный эффект. Но нередко эти вращающиеся детали надо просто заменить новыми. При этом не забываем их периодически смазывать.
Заключение по теме
Итак, в этой статье мы постарались ответить на вопрос, как подключить трехфазный электродвигатель в сеть переменного тока напряжением 220В? Все на самом деле не очень сложно, если разобраться со схемами и правильно подобрать конденсатор. Главное в самом подключении – это выбрать схему подключения. Как уже было сказано выше, оптимальный вариант – треугольник.
Схема подключения электродвигателя на 220В через конденсатор
Как правильно провести подключение электродвигателя 380 на 220 вольт
Трехфазный асинхронный двигатель – подключение на 220 вольт
Подключение трехфазного двигателя к однофазной сети
Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).
Подключение трехфазного двигателя по схеме треугольник
Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник
В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.
Положение контактов в распределительной коробке трехфазного двигателя
Подключение трехфазного двигателя по схеме звезда
Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме звезда
При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.
Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой — подключение третьего контакта через фазосдвигающий конденсатор.
Подключение трехфазного двигателя к однофазной сети
Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.
Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).
Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети — 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220 — для «треугольника). Большее напряжение для «звезды», меньшее — для «треугольника». В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.
Таблички трехфазных электродвигателей
Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».
Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».
Если рабочее напряжение двигателя составляет 220/127В, то к однофазной сети на 220В двигатель можно подключить только по схеме «звезда». При подключении 220В по схеме «треугольник», двигатель сгорит.
Начала и концы обмоток (различные варианты)
Пожалуй, основная сложность подключения трехфазного двигателя в однофазную сеть заключается в том, чтобы разобраться в проводах, выходящих в распределительную коробку или, при отсутствии последней, просто выведенных наружу двигателя.
Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.
Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.
Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):
- определению пар проводов, относящихся к одной обмотке;
- нахождению начала и конца обмоток.
Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.
Определение пар проводов относящихся к одной обмотке
Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.
Нахождение начала и конца обмоток
К концам одной обмотки (например, A ) подключается батарейка, к концам другой (например, B ) — стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В. Таким же образом проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C или B .
В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по необходимой схеме — «треугольник» или «звезда» (если напряжение двигателя 220/127В).
Извлечение недостающих концов. Пожалуй, самый сложный случай — когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода — начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.
Табличка разбираемого электродвигателя
Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.
Вывод проводов в клеммную коробку
Подключение проводов к клеммной колодке
Схемы подключения трехфазного двигателя в однофазную сеть
Подключение по схеме «треугольник». В случае бытовой сети, с точки зрения получения большей выходной мощности наиболее целесообразным является однофазное подключение трехфазных двигателей по схеме «треугольник». При этом их мощность может достигать 70% от номинальной. Два контакта в распределительной коробке подсоединяются непосредственно к проводам однофазной сети (220В), а третий — через рабочий конденсатор Ср к любому из двух первых контактов или проводам сети.
Подключение трехфазного двигателя к однофазной сети по схеме треугольник
Подключение трехфазного двигателя к однофазной сети по схеме треугольник
Обеспечение пуска. Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.
Подключение трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором Сп
Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока не будет нажата кнопка «стоп».
Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.
Реверс трехфазного двигателя
Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.
На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.
Схема подключения трехфазного двигателя к однофазной сети, с реверсом и кнопкой для подключения пускового конденсатора
Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.
Подключение трехфазного двигателя к однофазной сети по схеме звезда
Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:
Для соединения «треугольником»:
Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:
Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.
На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70•Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.
Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.
При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.
Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.
Клиноременная передача мотоблока Салют 5
Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.
Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.
Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).
Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.
Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: Cобщ = C1 + C1 +. + Сn .
Параллельное соединение конденсаторов
В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.
При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.
Самостоятельное подключение трехфазного двигателя к однофазной сети – сложно, но осуществимо
Доморощенные «кулибины» используют для электромеханических поделок то, что попадется под руку. При выборе электродвигателя, обычно попадаются трехфазные асинхронные. Этот тип получил широкое распространение благодаря удачной конструкции, хорошей балансировке и экономичности.
Особенно это актуально в мощных промышленных агрегатах. За пределами частного дома или квартиры, проблем с трехфазным питанием нет. А как организовать подключение трехфазного двигателя к однофазной сети, если ваш счетчик имеет два провода?
Рассмотрим вариант штатного подключения
Трехфазный двигатель, имеет три обмотки под углом 120°. На контактную колодку выводится три пары контактов. Соединение можно организовать двумя способами:
Подключение по схеме «звезда» и «треугольник»
Подключение по схеме «звезда». Каждая обмотка одним концом соединяется с двумя другими обмотками, образуя так называемую нейтраль. Оставшиеся концы соединяются с тремя фазами. Таким образом, на каждую пару обмоток подается 380 вольт:
В распределительной колодке, перемычки соединены соответственно, перепутать контакты невозможно. Понятия полярности в переменном токе нет, поэтому не имеет значения, какую фазу, на какой провод подавать.
Подключение по схеме «треугольник». При таком способе конец каждой обмотки соединяется со следующей, в результате получается замкнутый круг, точнее треугольник. На каждой обмотке присутствует напряжение 380 вольт.
Соответственно, на клемной колодке перемычки устанавливаются по-иному. Аналогично с первым вариантом, полярность отсутствует, как класс.
На каждую группу контактов, ток поступает в разный момент времени, следуя понятию «сдвиг фазы». Поэтому магнитное поле последовательно увлекает за собой ротор, создавая непрерывный крутящий момент. Так работает двигатель при «родном» для него трехфазном питании.
А если вам достался двигатель в отличном состоянии, а подключить его надо к однофазной сети? Не стоит расстраиваться, схема подключения трехфазного двигателя давно отработана инженерами. Мы поделимся с вами секретами нескольких популярных вариантов.
Подключение трехфазного двигателя к сети 220 вольт (одна фаза)
На первый взгляд, работа трехфазного мотора при подключении к одной фазе ничем не отличается от правильного включения. Ротор вращается, практически не теряя оборотов, никаких рывков и замедлений не наблюдается.
Однако достичь штатной мощности при таком питании невозможно. Это вынужденная потеря, ее никак не исправить, приходится с этим считаться. В зависимости от управляющей схемы, снижение мощности колеблется от 20% до 50%.
При этом электроэнергия расходуется так же, как будто вы используете всю мощь. Чтобы выбрать наиболее выгодный вариант, предлагаем ознакомиться с различными способами:
Конденсаторный способ включения
Поскольку нам необходимо обеспечить тот самый «сдвиг по фазе», используем природные способности конденсаторов. Два подводящих провода у нас имеются, их подключаем соответственно к обеим точкам штатной клемной колодки.
Остается третий контакт, на который заводится ток от одного из уже подключенных. Причем не напрямую (иначе двигатель не начнет вращение), а через конденсаторную схему.
Используется два конденсатора (их называют фазосдвигающими).
На приведенной схеме видно, что один конденсатор включен постоянно, а второй через не фиксируемую кнопку. Первый элемент рабочий, его задача имитировать штатный сдвиг фазы для третьей обмотки.
Вторая емкость предназначена для первого оборота ротора, дальше он крутится по инерции, каждый раз попадая между фальшивыми «фазами». Пусковой конденсатор нельзя оставлять включенным постоянно, поскольку он внесет сумятицу в относительно стройный ритм вращения.
Внимание! Приведенная схема подключения трехфазного двигателя к однофазной сети является теоретической. Для реальной работы необходимо правильно рассчитать емкости обоих элементов, и подобрать тип конденсаторов.
Формула расчета рабочего «конденсатора»:
- При подключении «звездой» С=(2800*I)/U;
- При подключении «треугольником» С=(4800*I)/U;
С – полученная величина емкости в микрофарадах.
2800 (4800) физическая константа, без единицы измерения.
I – штатный ток каждой фазы при правильном подключении.
Его необходимо уточнить при приобретении мотора или узнать при помощи токоизмерительных клещей. Для этого придется хотя бы раз запустить двигатель от трех фаз.
U – напряжение сети при однофазном подключении. Как правило, 220 вольт.
Если измерить или узнать рабочий трехфазный ток не представляется возможным (как правило, так и будет), можно вычислить емкость по упрощенной формуле. Величина будет с небольшой погрешностью, но это не сильно скажется на работе двигателя.
С – полученная величина емкости в микрофарадах.
66 – физическая константа.
P – мощность двигателя при работе от трехфазного питания. Указана на заводском шильдике.
Ёмкость пускового конденсатора вычисляется без формулы. Она должна быть в 3 раза больше значения рабочего элемента.
Важно! Обязательно установите кнопку без фиксации, для отключения пусковой емкости. Некоторые «мастера» монтируют выключатель, который затем забывают разомкнуть. В результате обороты ротора становятся нестабильными, а обмотки статора сильно нагреваются.
Теперь осталось найти подходящие конденсаторы. Поскольку мы стремимся получить условно бесплатное оборудование (двигатель, как правило, приобретен за пару бутылок горячительного), то и конденсаторы подбираются по аналогичному принципу.
Обычно в мастерской найдется несколько бумажных конденсаторов в железном корпусе, типа МПГ или КБП. Это как раз то, что нужно. У них хорошая надежность и можно найти экземпляры с рабочим напряжением 300-600 вольт.
Недостаток один – такие конденсаторы имеют малую емкость и большие габариты. Поэтому вам придется набирать целую батарею, которую где-то надо разместить. Это плата за «бесплатность» конструкции. Если хочется сделать аккуратно, или нет возможности установить объемный пусковой механизм – воспользуйтесь современными радиоэлементами.
Полипропиленовые конденсаторы серии СВВ имеют малые размеры, и доступны в любом магазине радиодеталей. Разумеется, это увеличит стоимость вашей поделки.
Если вы собрали самодельную циркулярную пилу с мотором мощностью 5-8 кВт – то для батареи бумажных конденсаторов найдется место. А вот небольшой точильный станок с 500 ваттным мотором требует компактного размещения.
Подключение трехфазного двигателя к однофазному питания может быть любым: звездой и треугольником. На качество работы это принципиально не влияет. Обычно оставляют туже схему, которая использовалась штатно. Однако иногда, чтобы сэкономить на конденсаторах (при подключении «звездой» их нужно меньше), меняют способ коммутации обмоток.
Совет: При таком способе подключения, вы можете менять направление вращения трехфазного двигателя.
Это может быть удобно при работе с точильным или сверлильным станком. Необходимо добавить в схему коммутирующий переключатель с центральной точкой. Коммутируя цепь из третьей обмотки и конденсаторной группы к одному или другому контакту однофазного подключения, можно заставить ротор вращаться в нужном направлении.
Внимание! Коммутацию можно осуществлять только при остановленном роторе и отсоединенном питании.
Реверсное подключение трехфазного двигателя через магнитный пускатель
Для удобства работы с мощным мотором, и создания безопасного подключения, следует использовать магнитный пускатель. Трехфазные установки именно так и подключаются, управляющая кнопка имеет компактные размеры и рассчитана на малые токи. А силовой кабель коммутируется мощными контактами пускателя.
Подключение трехфазного двигателя к однофазной сети дает возможность использовать режим реверса. Мы рассмотрели технологию в предыдущей главе.
Для сборки схемы нам понадобятся следующие компоненты:
- Собственно электродвигатель;
- Два одинаковых трехфазных пускателя. Важно! Поскольку питание однофазное, рабочая катушка должна быть на 220 вольт;
- Кнопочный пост (две замыкающие кнопки, одна размыкающая, для остановки);
- Входной автомат с защитой от короткого замыкания;
- Фазосдвигающий рабочий конденсатор с рассчитанной емкостью.
Определимся с терминологией. Присвоим контактам трехфазных пускателей наименования «А», «B» и «С».
Собираем схему управления. Фазу от автомата заводим через размыкающую кнопку параллельно на условные рабочие контакты «А» обоих пускателей.
Нулевой провод соединяем с рабочими входами «С» обоих пускателей, и параллельно соединяем опять же с обеими катушками магнитов. На этом входная часть схемы управления собрана. Контакты «B» остаются незадействованными.
Разворачиваем блок пускателей на 180°. Для защиты от короткого замыкания при случайном нажатии сразу двух кнопок реверса, устанавливаем блокировку. Для этого соединяем крест-накрест управляющие катушки пускателей. Теперь пока одна катушка замкнута, вторая просто не включится. Это достигнуто благодаря наличию нормально замкнутых и разомкнутых контактов пускателя.
Далее подключаем кнопочный пост. Схема включения: Нормально разомкнутые контакты катушек двух пускателей соединяем между собой. На нормально замкнутые контакты подключаем кнопки, каждую к своему пускателю.
В результате получается реверсное включение катушек – каждая кнопка замыкает контактную группу своего пускателя, а кнопка «стоп» обесточивает обе катушки, и происходит отключение сразу всего модуля, вне зависимости от номера пускателя.
Проверяем правильность сборки блока без нагрузки. При нажатии пусковых кнопок, должен срабатывать соответствующий пускатель. При одновременном нажатии второй кнопки, ничего не происходит. Значит, схема собрана правильно, и можно подключать двигатель и фазосдвигающий конденсатор.
На выходных контактах фаза «А» первого пускателя соединяется с фазой «А» второго. Эту часть коммутации следует выполнить особенно внимательно. На входе оба питающих кабеля соединены параллельно. А на выходе необходимо обеспечить перекрестную коммутацию.
Соединяем фазу «В» первого пускателя с фазой «С» второго пускателя. Соответственно фазу «С» №1 соединяем с фазой «В» №2. Параллельно контактам «В» и «С» второго магнита подключаем фазосдвигающий конденсатор.
Теперь при нажатии кнопок мы получаем требуемое направление вращения.
Итог: В зависимости от наличия деталей, вы можете воспользоваться любым из предложенных вариантов. Все зависит от суммы, которую вы желаете потратить.
И в заключение смотрите видео — подключение трехфазного двигателя к однофазной сети 220 вольт.
Поделиться с друзьями:
Источники: http://onlineelektrik.ru/eoborudovanie/edvigateli/kak-podklyuchit-trexfaznyj-elektrodvigatel-v-set-220v-sxemy-i-rekomendacii.html, http://tool-land.ru/podklyuchenie-trekhfaznogo-dvigatelya.php, http://obinstrumente.ru/elektronika/podklyuchenie-trexfaznogo-dvigatelya.html