Как обозначается заземление на схеме

Все, что обязательно надо знать про заземление

Как обозначается заземление на схеме Заземление — электрическое соединение предмета из проводящего материала с землёй. Заземление состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемое устройство с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы.

Качество заземления определяется значением электрического сопротивления цепи заземления, которое можно снизить, увеличивая площадь контакта или проводимость среды — используя множество стержней, повышая содержание солей в земле и т.д. Устройство заземления в России требования к заземлению и его устройство регламентируются Правилами устройства электроустановок (ПУЭ).

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение РЕ и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов.

Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Ошибки в устройстве заземления

Иногда в качестве заземлителя используют водопроводные трубы или трубы отопления, однако их нельзя использовать в качестве заземляющего проводника. В водопроводе могут быть непроводящие вставки (например, пластиковые трубы), электрический контакт между трубами может быть нарушен из-за коррозии, и, наконец, часть трубопровода может быть разобрана для ремонта.

Объединение рабочего нуля и PE-проводника

Как обозначается заземление на схемеДругим часто встречающимся нарушением является объединение рабочего нуля и PE-проводника за точкой их разделения (если она есть) по ходу распределения энергии. Такое нарушение может привести к появлению довольно значительных токов по PE-проводнику (который не должен быть токонесущими в нормальном состоянии), а также к ложным срабатываниям устройства защитного отключения (если оно установлено). Неправильное разделение PEN-проводника

Крайне опасным является следующий способ «создания» PE-проводника: прямо в розетке определяется рабочий нулевой проводник и ставится перемычка между ним и PE-контактом розетки. Таким образом, PE-проводник нагрузки, подключенной к этой розетке, оказывается соединенным с рабочим нулем.

Опасность данной схемы в том, что на заземляющем контакте розетки, а следовательно, и на корпусе подключенного прибора появится фазный потенциал, при выполнении любого из следующих условий:
— Разрыв (рассоединение, перегорание и т.д.) нулевого проводника на участке между розеткой и щитом (а также далее, вплоть до точки заземления PEN-проводника);
— Перестановка местами фазного и нулевого (фазный вместо нулевого и наоборот) проводников, идущих к этой розетке.

Защитная функция заземления

Защитное действие заземления основано на двух принципах:

— Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

— Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО ).

Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые сотые доли секунды — время срабатывания УЗО).

Работа заземления при неисправностях электрооборудования Типичный случай неисправности электрооборудования — попадание фазного напряжения на металлический корпус прибора вследствие нарушения изоляции. В зависимости от того, какие защитные мероприятия реализованы, возможны следующие варианты:

— Корпус не заземлен, УЗО отсутствует (наиболее опасный вариант). Корпус прибора будет находиться под фазным потенциалом и это никак не будет обнаружено. Прикосновение к такому неисправному прибору может быть смертельно опасным.

— Корпус заземлен, УЗО отсутствует. Если ток утечки по цепи фаза-корпус-заземлитель достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то предохранитель сработает и отключит цепь. Наибольшее действующее напряжение (относительно земли) на заземленном корпусе составит Umax=RGIF, где RG. сопротивление заземлителя, IF. ток, при котором срабатывает предохранитель, защищающий эту цепь. Данный вариант недостаточно безопасен, так как при высоком сопротивлении заземлителя и больших номиналах предохранителей потенциал на заземленном проводнике может достигать довольно значительных величин. Например, при сопротивлении заземлителя 4 Ом и предохранителе номиналом 25 А потенциал может достигать 100 вольт.

— Корпус не заземлен, УЗО установлено. Корпус прибора будет находиться под фазным потенциалом и это не будет обнаружено до тех пор, пока не возникнет путь для прохождения тока утечки. В худшем случае утечка произойдет через тело человека, коснувшегося одновременно неисправного прибора и предмета, имеющего естественное заземление. УЗО отключает участок сети с неисправностью, как только возникла утечка. Человек получит лишь кратковременный удар током (0,010,3 секунды — время срабатывания УЗО), как правило, не причиняющий вреда здоровью.

— Корпус заземлен, УЗО установлено. Это наиболее безопасный вариант, поскольку два защитных мероприятия взаимно дополняют друг друга. При попадании фазного напряжения на заземленный проводник ток течет с фазного проводника через нарушение изоляции в заземляющий проводник и далее в землю. УЗО немедленно обнаруживает эту утечку, даже если та весьма незначительна (обычно порог чувствительности УЗО составляет 10 мА или 30 мА), и быстро (0,010,3 секунды) отключает участок сети с неисправностью. Помимо этого, если ток утечки достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то может также сработать и предохранитель. Какое именно защитное устройство (УЗО или предохранитель) отключит цепь — зависит от их быстродействия и тока утечки. Возможно также срабатывание обоих устройств.

Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном АЭГ (AEG, Allgemeine Elektricitats-Gesellschaft) в 1913 году. Рабочий ноль и PE-проводник (Protection Earth) в этой системе совмещены в один провод. Самым большим недостатком было образование линейного напряжения (в 1,732 раза выше фазного) на корпусах электроустановок при аварийном обрыве нуля.

Несмотря на это, на сегодняшний день можно встретить данную систему заземления в постройках стран бывшего СССР.

На замену условно опасной системы TN-C в 1930-х была разработана система TN-S (фр. Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры.

Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Киргхофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.

Также можно наблюдать систему TN-C-S, где разделений нулей происходит в середине линии, однако в случае обрыва нулевого провода до точки разделения корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.

Статьи и схемы

Полезное для электрика

Навигация по справочнику TehTab.ru:главная страница / / Техническая информация / / Технологические понятия и чертежи / / Электроснабжение./ / Расшифровка условных обозначений систем заземления. Принципиальные схемы систем заземления. Обозначение систем заземления для электроустановок напряжением до 1кВ (сети 220/380В входят).

Расшифровка условных обозначений систем заземления. Принципиальные схемы систем заземления. Обозначение систем заземления для электроустановок напряжением до 1кВ (сети 220/380В входят).

Расшифровка условных обозначений систем заземления. Принципиальные схемы систем заземления. Обозначение систем заземления для электроустановок напряжением до 1кВ (сети 220/380В входят).

  • Первая буква — состояние нейтрали источника относительно земли :
  • Т — заземленная нейтраль;
  • I — изолированная нейтраль.
  • Вторая буква — состояние открытых проводящих частей относительно земли
  • Т — открытые проводящие части заземлены независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
  • N — открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.
    • Последующие буквы после N — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников
    • S — нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены
    • С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (РЕN-проводник)

Все возможные варианты перечислимы:

  • TN-С — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении;
  • ТN-S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении;
  • TN-С-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания;
  • IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены;
  • TТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

Система заземления TN-C

Система заземления TN-C система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении

Cхема наиболее часто встречающаяся в домах старой постройки

где:

  • 1 – заземлитель нейтрали (средней точки) источника питания;
  • 2 – открытые проводящие части;
  • N – нулевой рабочий (нейтральный) проводник;
  • PEN – совмещенный нулевой защитный и нулевой рабочий проводники.

Система заземления TN-S

Система заземления TN-S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении, где:

  • 1 – заземлитель нейтрали (средней точки) источника питания;
  • 2 – открытые проводящие части;
  • N – нулевой рабочий (нейтральный) проводник;
  • PE – защитный проводник

Система заземления TN-С-S

Система заземления TN-С-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания где:

  • 1 – заземлитель нейтрали (средней точки) источника питания;
  • 2 – открытые проводящие части;
  • N – нулевой рабочий (нейтральный) проводник;
  • PE – защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов
  • PEN – совмещенный нулевой защитный и нулевой рабочий проводники.

Система заземления IT

Система заземления IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены где:

  • 1 – сопротивление заземления нейтрали источника питания (если имеется);
  • 2 – заземлитель;
  • 3 – открытые проводящие части;
  • 4 – заземляющее устройство;
  • PE – защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов).

Система заземления TT — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника. Приведем 2 возможные принципиальные схемы, где:

Система заземления TT. Вариант 1.

  • 1 – заземлитель нейтрали (средней точки) источника питания;
  • 2 – открытые проводящие части;
  • 3 – заземлитель открытых проводящих частей;
  • N – нулевой рабочий (нейтральный) проводник;
  • PE – защитный проводник

Система заземления TT. Вариант 1.

  • 1 – заземлитель нейтрали (средней точки) источника питания;
  • 2 – открытые проводящие части;
  • 3 – заземлитель открытых проводящих частей;
  • PE – защитный проводник

Краткий обзор условных обозначений, используемых в электросхемах

28.10.2015 1 комменатрий 128 556 просмотров

Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта Сам Электрик условные обозначения в электрических схемах, как графические, так и буквенные.

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Как обозначается заземление на схеме

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Как обозначается заземление на схеме

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

Как обозначается заземление на схеме

Как обозначается заземление на схеме

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Как обозначается заземление на схеме

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Как обозначается заземление на схеме

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

Как обозначается заземление на схеме

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Как обозначается заземление на схеме

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

Как обозначается заземление на схеме

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Как обозначается заземление на схеме

Как обозначается заземление на схеме

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Как обозначается заземление на схеме

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео по теме:

Мы уже рассказывали Вам, как расшифровать маркировку проводов и кабелей. В однолинейных электросхемах также присутствуют свои буквы, которые дают понять, что включено в сеть. Итак, согласно ГОСТ 7624-55, буквенное обозначение элементов на электрических схемах выглядит следующим образом:

  1. Реле тока, напряжения, мощности, сопротивления, времени, промежуточное, указательное, газовое и с выдержкой по времени, соответственно – РТ, РН, РМ, РС, РВ, РП, РУ, РГ, РТВ.
  2. КУ – кнопка управления.
  3. КВ – конечный выключатель.
  4. КК – командо-контроллер.
  5. ПВ – путевой выключатель.
  6. ДГ – главный двигатель.
  7. ДО – двигатель насоса охлаждения.
  8. ДБХ – двигатель быстрых ходов.
  9. ДП – двигатель подач.
  10. ДШ – двигатель шпинделя.

Помимо этого в отечественной маркировке элементов радиотехнических и электрических схем выделяют следующие буквенные обозначения:

Как обозначается заземление на схеме

На этом краткий обзор условных обозначений в электрических схемах закончен. Надеемся, теперь Вы знаете, как обозначаются розетки, выключатели, светильники и остальные элементы цепи на чертежах и планах жилых помещений.

НравитсяКак обозначается заземление на схеме( 0 ) Не нравитсяКак обозначается заземление на схеме( 0 )

Источники: http://electricalschool.info/main/electrobezopasnost/225-vse-chto-objazatelno-nado-znat-pro.html, http://tehtab.ru/guide/guidetechnologydrawings/electricalsupply/earthingupto1000v/, http://samelectrik.ru/kratkij-obzor-uslovnyx-oboznachenij-ispolzuemyx-v-elektrosxemax.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий
Adblock
detector