Для чего применяются плавкие предохранители

Предохранители плавкие. Назначение и принцип работы плавких предохранителей.

Предохранитель — коммутационный электрический аппарат, предназначенный для отключения защищаемой цепи посредством разрушения специально предусмотренных для этого токоведущих частей под действием тока, превышающего определенное значение.

В большей части конструкций отключение цепи осуществляется путем расплавления плавкой вставки, которая нагревается непосредственно током защищаемой цепи. После отключения цепи необходимо заменить перегоревшую вставку на исправную.) Эта операция производится вручную либо автоматически. В последнем случае заменяется весь предохранитель.

Для чего применяются плавкие предохранители

Рис. 5-1. Времятоковая характеристика предохранителей серии ПН-2

Предохранители появились одновременно с электрическими сетями. Простота устройства и обслуживания, малые размеры, высокая отключающая способность, небольшая стоимость обеспечили очень широкое их применение. Предохранители низкого напряжения изготовляются на токи от миллиампер до тысяч ампер и на напряжение до 660 В, а предохранители высокого напряжения — до 35 кВ и выше.

Широкое применение предохранителей в самых различных областях народного хозяйства и в быту привело к многообразию их конструкций. Однако несмотря на это, все они имеют следующие основные [элементы: корпус или несущую деталь, плавкую вставку, контактное присоединительное устройство, дугогасительное устройство или дугогасительную среду.

Важнейшей характеристикой предохранителя является зависимость времени перегорания плавкой вставки от тока времятоковая характеристика (рис. 5-1).

Предохранитель работает в двух резко отличных режимах: в нормальных условиях ив условиях перегрузок и коротких замыканий. В первом случае нагрев вставки имеет характер установившегося процесса, при котором вся выделяемая в ней теплота отдается в окружающую среду. При этом кроме вставки нагреваются до установившейся температуры и все другие детали предохранителя. Эта температура не должна превышать допустимых значений. Ток, на который рассчитана плавкая вставка для длительной работы, называют номинальным током плавкой вставки 1ном.. Он может быть отличным от номинального тока самого предохранителя.

Обычно в один и тот же предохранитель можно вставлять плавкие вставки на различные номинальные токи. Номинальный ток предохранителя . указанный на нем, равен наибольшему из номинальных токов плавких вставок, предназначенных для данной конструкции предохранителя.

Защитные свойства предохранителя при перегрузках нормируются. Для предохранителей обычного быстродействия задаются условный ток неплавления — ток, при протекании которого в течение определенного времени плавкая вставка не должна перегореть, и условный ток плавления — ток, при протекании которого в течение скрепленного времени плавкая вставка должна перегореть. Например, для предохранителя с плавкими вставками на номинальные токи 63—100 А плавкие вставки не должны перегореть при протекании тока 1,3 Iном в течение одного часа, а при токе 1,6Iном должны перегореть за время до одного часа.

При токах, превышающих условный ток плавления, предохранитель должен сработать в соответствии с времятоковой характеристикой. С ростом тока степень ускорения перегорания плавкой вставки должна возрастать намного быстрее тока Для получения такой характеристики придают вставке специальную форму или используют металлургический эффект.

Вставку выполняют в виде пластинки с вырезами (рис. 5-2, а), уменьшающими ее сечение на отдельных участках. На этих суженных участках выделяется больше теплоты, чем на широких. При номинальном токе избыточная теплота вследствие теплопроводности материала вставки успевает распространиться к более широким частям, и вся вставка имеет практически одну температуру. При перегрузках (I≈I∞max) нагрев суженных участков идет быстрее; так как только часть теплоты успевает отводиться к широким участкам. Плавкая вставка плавится в одном самом горячем месте (рис. 5-2,б). При коротком замыкании (I>>I∞) нагрев суженных участков идет настолько интенсивно, что практически отводом теплоты от них можно пренебречь. Плавкая вставка перегорает одновременно во всех или в нескольких суженных местах (рис. 5-2, в).

Для чего применяются плавкие предохранители

Рис. 5-2. Распределение температур (а) и места перегорания фигурных плавких вставок при перегрузках (б) и при коротких замыканиях (в).

Во многих конструкциях плавкой вставке 1 придается такая форма (рис 5-3 а) при которой электродинамические силы F, возникающие при токах короткого замыкания, разрывают вставку еще до того, как она успевает расплавиться На рисунке место разрыва обозначено кружком. Этот участок выполняется меньшего сечения. При токах перегрузки электродинамические силы малы и плавкая вставка плавится в суженном месте. В конструкции, показанной на рис. 5-3,б ускорение отключения цепи при перегрузках и коротких замыканиях достигается за счет пружины 2, разрывающей вставку; при размягчении-металле на суженных участках до того, как происходит плавление этих участков.

Металлургический эффект заключается в том, что многие легкоплавкие металлы (олово, свинец и др.) способны в расплавленном состоянии растворять некоторые тугоплавкие металлы (медь, серебро и др.). Полученный таким образом раствор обладает иными характеристиками, чем исходные материалы (например большим электрическим сопротивлением и пониженной температурой плавления) Указанное явление используется в предохранителях с вставками из ряда параллельных проволок.

Для чего применяются плавкие предохранители

Рис. 5-3. Примеры форм плавких вставок с ускоренным их разрывом.

Для ускорения плавления вставки при перегрузках и снижения общей температуры всей вставки при ее плавлении на проволоки напаиваются небольшие оловянные щарики. При токах перегрузки, когда температура вставки достигает температуры плавления олова, шарик, расплавляется и растворяет, часть металла, на котором он напаян. Происходит местное увеличение сопротивления вставки и снижение температуры плавления-металла, в этом месте. Вставка перегорает в том месте, где был наплавлен шарик. При этом температура всей вставки оказывается намного ниже температуры плавления металла, из которого она выполнена. В номинальном режиме шарик практически не влияет на температуру нагрева вставки.

Этот способ получения требуемой времятоковой характеристики может применяться при тонких вставках, например при диаметре шарика 1 мм для проволок диаметром 0,3 мм и диаметре шарика до 2 мм при более толстых проволоках. При возрастании диаметра вставки влияние металлургического эффекта резко снижается и практически не сказывается.

Рассмотренные способы ускорения перегорания вставки при токах перегрузки и коротких замыканиях обусловливают одно весьма существенное достоинство плавких предохранителей — их токоограничивающее действие. Плавкая вставка перегорает много раньше, чем ток в цепи при коротком замыкании успевает достигнуть установившегося значения iуст. Таким образом, ток короткого замыкания ограничивается в 2—5 раз и тем самым снижается разрушительное действие электродинамических сил. Если при возможном установившемся токе короткого замыкания 25 кА плавкая вставка перегорела при 8 кА, то значение электродинамических сил в цепи ограничено более чем в 9 раз. Токоограничивающее действие плавких вставок с использованием металлургического эффекта ниже, чем при других способах токоограничения.

Гашение электрической дуги, возникающей после перегорания плавкой вставки, должно быть осуществлено в возможно короткое время. Время гашения дуги зависит от конструкции предохранителя и принятого способа гашения. Наибольший ток, который плавкий предохранитель может отключить без каких-либо повреждений или деформаций, препятствующих его дальнейшей исправной работе после смены плавкой вставки, называют предельным током отключения предохранителя.

В современных предохранителях с закрытыми патронами без наполнителя дуга гасится за счет высокого давления, возникающего в патроне вследствие появления дуги, а при наличии наполнителя — за счет интенсивного охлаждения дуги наполнителем и высокого давления, вызываемого дугой в узких каналах наполнителя. При этом гашение дуги происходит в ограниченном объеме патрона предохранителя. За пределы патрона не выбрасываются ни пламя дуги, ни ионизированные газы.

Достаточно совершенная система дугогашения совместно с токоограничивающим действием вставки обусловливают неограниченную отключающую способность плавких предохранителей. Это не значит, что предохранители могут отключать сколь угодно большие токи короткого замыкания. Неограниченную отключающую способность следует понимать так: плавкие предохранители могут применяться для защиты цепей, в которых установившийся ток короткого замыкания мог бы достигнуть очень больших значений (в современных крупных энергоустановках можно предполагать 200-500 кА). Плавкие вставки изготовляют из свинца, сплавов свинца с оловом, цинка, меди, серебра и др. Вставки из легкоплавких металлов (свинец, цинк — температура плавления 200-420 °С) позволяют получить невысокую температуру всего предохранителя, однако они обладают невысокой проводимостью и получаются значительных сечений, особенно при больших номинальных токах. Широко распространены цинковые вставки. Пары цинка имеют относительно высокий потенциал ионизации, что способствует гашению дуги. Вставки из меди и серебра получаются меньшего сечения, но недостатком их является высокая температура плавления, что приводит при токах перегрузки к сильному нагреву и быстрому разрушению деталей предохранителя. Медные плавкие вставки должны обязательно иметь антикоррозионное покрытие. В противном случае окисление приведет к постепенному уменьшению сечения вставки и несвоевременному перегоранию.

Применение параллельных плавких вставок (при больших токах) позволяет при том же суммарном поперечном сечении их получить большую поверхность охлаждения, тем самым улучшить условия охлаждения вставок и лучше использовать объем наполнителя (в предохранителях с наполнителем).

Плавкие предохранители

Предохранители предназначены для защиты электрических сетей от перегрузок и коротких замыканий. Наибольшее распространение получили плавкие предохранители. Они дешевы и просты по устройству.

Плавкий предохранитель состоит из двух основных частей: корпуса (патрона) из электроизоляционного материала и плавкой вставки. Концы плавкой вставки соединены с клеммами, с помощью которых предохранитель включается в линию последовательно с защищаемым потребителем или участком цепи. Плавкая вставка выбирается с таким расчетом, чтобы она плавилась раньше, чем температура проводов линии достигнет опасного уровня или перегруженный потребитель выйдет из строя.

По конструктивным особенностям различают пластинчатые, патронные, трубочные и пробочные предохранители. Сила тока, на который рассчитана плавкая вставка, указывается на ее корпусе. Оговаривается также максимально допустимое напряжение, при котором может использоваться предохранитель.

Основной характеристикой плавкой вставки является зависимость времени ее перегорания от тока (рис.1). Эта кривая снимается экспериментально: берется партия одинаковых предохранителей, которые последовательно пережигаются при разных токах. Замеряется время, по истечении которого вставка перегорает, и ток, проходящий через вставку. Каждому току соответствует определенное время перегорания вставки. По этим данным и строится временная характеристика.

На этой кривой особо выделяются следующие токи, которые используются для выбора плавких вставок:

Imin — наименьший из токов, расплавляющих вставку (при этом токе вставка еще плавится, но в течение неопределенно продолжительного времени (1-2 ч); при меньших токах вставка уже не расплавляется);

I10 — ток, при котором плавление вставки и отключение сети происходит через 10 с после установления тока;

Iном — номинальный ток вставки, т.е. ток, при котором вставка длительно работает, не нагреваясь выше допустимой температуры.

Токи связаны простым соотношением: Iном =I10 /2,5.

При графическом изображении зависимости времени перегорания вставки от тока по оси абсцисс иногда откладывают не абсолютное значение тока, а отношение тока к его номинальному значению.

Таблица 1 позволяет определить требуемый диаметр плавкой вставки в зависимости от номинального тока. Минимальный ток определяют из приближенного соотношения: Imin =(1,3. 1,5)×Iном .

Диаметр провода, мм

ГОСТ Р 50339.0-92 Низковольтные плавкие предохранители. Общие требования.

ГОСТ Р 50339.1-92 Низковольтные плавкие предохранители. Часть 2. Дополнительные требования к плавким предохранителям промышленного назначения.

ГОСТ Р 50339.2-92 Низковольтные плавкие предохранители. Часть 2-1. Дополнительные требования к плавким предохранителям промышленного назначения.
Разделы 1-3.

ГОСТ Р 50339.3-92 Низковольтные плавкие предохранители. Часть 3. Дополнительные требования к плавким предохранителям бытового и аналогичного назначения.

ГОСТ Р 50339.4-92 Низковольтные плавкие предохранители. Часть 4. Дополнительные требования к плавким предохранителям для защиты полупроводниковых устройств.

Преддуговое время — время между появлением тока, достаточного для расплавления плавкого элемента(ов), и моментом возникновения дуги.

Время дуги — время между моментами возникновения и окончательного погасания дуги.

Время отключения — сумма преддугового времени и времени дуги.

Номинальный ток плавкой вставки — значение тока, который плавкая вставка может длительно проводить в установленных условиях без повреждений.

Времятоковая характеристика — кривая зависимости преддугового времени или времени отключения от ожидаемого тока в установленных условиях срабатывания.

Примечание: для времени больше 0,1 с практически можно пренебречь разницей между преддуговым временем и временем отключения.

Условный ток неплавления — установленное значение тока, который плавкая вставка способна пропускать в течение установленного (условного) времени, не расплавляясь.

Условный ток плавления — установленное значение тока, вызывающего срабатывание плавкой вставки в течение установленного (условного) времени.

185.154.22.117 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Что такое плавкие предохранители и для чего они нужны?

Плавкий предохранитель – это коммутационный электрический аппарат, который используется для отключения защищенной цепи. Его назначение – это защита электрической сети и электрооборудования от короткого замыкания и значительной перегрузки. Основными параметрами изделий являются номинальный и предельно отключаемый ток, а также номинальное напряжение. В этой статье мы подробно рассмотрим плавкие предохранители: их назначение, типы, устройство и принцип действия.

Как работает устройство?

Плавкий предохранитель работает в двух режимах, которые значительно отличаются друг от друга.

  1. Нормальный режим сети. В этом режиме нагрев устройства происходит, как установившейся процесс. При этом он полностью нагревается до определенной температуры и отдает выделяемую теплоту в окружающую среду. На каждом элементе указывается так называемая номинальная сила тока (как правило, указывается наибольшее значение тока элемента конструкции). В предохранитель можно вставить плавкий элемент разной номинальной силы тока.
  2. Режим коротких замыканий и перегрузок. Прибор сконструирован так, что при возрастании силы тока в сети, он мог сгореть за кратчайшее время. Для этого плавкий элемент на отдельных участках делают с меньшим сечением, где выделяется больше теплоты, чем на широких участках. При коротком замыкании перегорают практически все или полностью все зауженные участки. Когда плавится элемент, вокруг него создается электрическая дуга, гашение которой происходит в патроне механизма.

Сила тока должна указываться на корпусе прибора, а также должно учитываться максимально разрешенное напряжение, при котором прибор не выйдет из строя.

На графике ниже указывается зависимость времени перегорания плавкого элемента от тока:

Для чего применяются плавкие предохранители

Где l10 – это ток, при котором происходит плавление элемента и отключение его от сети за 10 с.

Разновидности и типы элементов

Плавкие предохранители делятся на два вида: низковольтные и высоковольтные. Деление это объясняется величиной напряжения рабочей электросети, в которой используется предохранитель.

Низковольтные приборы маркируются как ПН или ПР и рассчитаны для напряжения до 1000 В. В низковольтных устройствах ПН вокруг вставки из меди находится мелкозернистый наполнитель. Применение их рассчитано до 630 Ампер.

Для чего применяются плавкие предохранители

Прибор ПР более простой (на фото ниже), чем ПН, но при коротком замыкании и они способны гасить электрическую дугу. Рассчитаны на токи от 15 до 60 Ампер.

Для чего применяются плавкие предохранители

По конструктивным особенностям предохранители делятся на патронные, пробочные, пластичные и трубчатые. По типу исполнения выпускают разборные и неразборные изделия. У разборных есть возможность доступа к вставке. Конструкция разбирается и сгоревшая вставка заменяется на новую. Неразборные сконструированы из стеклянной колбы, поэтому считаются одноразовыми и замене вставки не подлежат.

Конструкция

Современный плавкий предохранитель состоит из двух частей:

  • основание из электроизоляционного материала с металлической резьбой (необходимо для соединения с электрической цепью);
  • сменная вставка, которая плавится.

Для чего применяются плавкие предохранители

Основа устройства – вставка, которая сгорает или плавится при коротком замыкании. Для того чтобы погасить дугу, которая образовывается в результате перегорания сменной вставки, устанавливают дугогасящие приспособления.

Выводы вставки соединяются с клеммами таким образом, что предохранитель подключается в линию электрической цепи. Для этого применяют специальные надежные крепежные клеммы (держатели), которые должны обеспечивать хороший контакт. Если его не будет – то в этом месте может возникнуть нагрев.

Для чего применяются плавкие предохранители

Особенностью конструкции предохранителей считается то, что устройство сгорает раньше, чем повреждаются другие части механизма. Ведь его легче заменить, чем микросхему или другой компонент оборудования. Поэтому такую деталь и выбирают с тем учетом, чтобы скорость его плавления была больше, чем в проводах линии. Их температура не должна достигнуть опасного уровня, так как это приведет к выходу из строя оборудования.

Конструкция механизма пробочного типа имеет вид патрона, в который вкручивается плавкий предохранитель с цоколем. При возникновении аварийной ситуации перегорает пробка. На сегодня это пробка имеет вид кнопки, похожей на обычный выключатель. Эта кнопка после аварии возвращает устройство в рабочее состояние.

Помимо того, что плавкий компонент защищает электрическую цепь от повреждений, он еще и защищает от пожаров и возгораний. Ведь обычный провод может соприкасаться с горючими материалами в момент возгорания, а деталь сгорает внутри корпуса прибора.

Номиналы устройства подбираются по наименьшим расчетным токам электрической сети или отдельной части электрической цепи. Таблица номиналов предоставлена ниже:

Для чего применяются плавкие предохранители

Если необходимо сменить такой компонент на АВ (автоматические выключатели), то их номинал должен быть на шаг больше составляющей части. Например:

Для чего применяются плавкие предохранители

Напоследок рекомендуем просмотреть полезное видео по теме:

Вот мы и рассмотрели устройство, принцип действия и назначение плавких предохранителей. Надеемся, предоставленная информация была для вас полезной и интересной!

Наверняка вы не знаете:

Источники: http://www.eti.su/articles/visokovoltnaya-tehnika/visokovoltnaya-tehnika_629.html, http://studopedia.ru/3_12512_plavkie-predohraniteli.html, http://samelectrik.ru/chto-takoe-plavkie-predoxraniteli.html

Рейтинг
( Пока оценок нет )
Всё об электрике в доме
Добавить комментарий