Чем отличается ноль от заземления

Для чего нужны фаза, ноль и заземление?

Известно, что электрическая энергия вырабатывается на электрических станциях при помощи генераторов переменного тока. Затем, по линиям электропередач от трансформаторных подстанций электроэнергия поступает потребителям. Разберем подробнее, каким образом энергия подводится к подъездам многоэтажных домов и частным домам. Это даст понять даже чайникам в электрике, что такое фаза, ноль и заземление и зачем они нужны.

Простое объяснение

Итак, для начала простыми словами расскажем, что собой представляют фазный и нулевой провод, а также заземление. Фаза — это проводник, по которому ток приходит к потребителю. Соответственно ноль служит для того, чтобы электрический ток двигался в обратном направлении к нулевому контуру. Помимо этого назначение нуля в электропроводке — выравнивание фазного напряжения. Заземляющий провод, называемый так же землей, не находится под напряжением и предназначен для защиты человек от поражения электрическим током. Подробнее о заземлении вы можете узнать в соответствующем разделе сайта.

Чем отличается ноль от заземления

Надеемся, наше простое объяснение помогло разобраться в том, что такое ноль, фаза и земля в электрике. Также рекомендуем изучить цветовую маркировку проводов. чтобы понимать, какого цвета фазный, нулевой и заземляющий проводник!

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Чем отличается ноль от заземления

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

Чем отличается ноль от заземления

Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено. Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током.

К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.

Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.

Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:

Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе «Задать вопрос электрику «!

Рекомендуем также прочитать:

Самый скандальный вопрос — заземление (зануление)

Говоря в общем, можно заметить, что великая и ужасная сила электричества давно описана, подсчитана, занесена в толстые таблицы. Нормативная база, определяющая пути синусоидальных электрических сигналах частоты 50 Гц способна ввергнуть любого неофита в ужас своим объемом. И, несмотря на это, любому завсегдатаю технических форумов давно известно — нет более скандального вопроса, чем заземление.

Масса противоречивых мнений на деле мало способствует установлению истины. Тем более, вопрос этот на самом деле серьезный, и требует более пристального рассмотрения.

Если опустить вступление «библии электрика» (ПУЭ ), то для понимания технологии заземления нужно обратиться (для начала) к Главе 1.7, которая так и называется «Заземление и защитные меры электробезопастности».

В п. 1.7.2. ПУЭ сказано:

Электроустановки в отношении мер электробезопасности разделяются на:

  • электроустановки выше 1 кВ в сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю), ;
  • электроустановки выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю);
  • электроустановки до 1 кВ с глухозаземленной нейтралью;
  • электроустановки до 1 кВ с изолированной нейтралью.

В подавляющем большинстве жилых и офисных домов России используется глухозаземленная нейтраль. Пункт 1.7.4. гласит:

Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).

Термин не совсем понятный на первый взгляд — нейтраль и заземляющее устройство на каждом шагу в научно-популярной прессе не встречаются. Поэтому, ниже все непонятные места будут постепенно объяснены.

Введем немного терминов — так можно будет по крайней мере говорить на одном языке. Возможно, пункты будут казаться «вытащенными из контекста». Но ПУЭ не художественная литература, и такое раздельное использование должно быть вполне обоснованно — как применение отдельных статей УК. Впрочем, оригинал ПУЭ вполне доступен как в книжных магазинах, так и в сети — всегда можно обратиться к первоисточнику.

  • 1.7.6. Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.
  • 1.7.7. Защитным заземлением называется заземление частей электроустановки с целью обеспечения электробезопасности .
  • 1.7.8. Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки.
  • 1.7.9. Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.
  • 1.7.12. Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.
  • 1.7.16. Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем.
  • 1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.
  • 1.7.18. Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока. Совмещенным нулевым защитным и нулевым рабочим проводником (РЕN) в электроустановках до 1 кВ называется проводник, сочетающий функции нулевого защитного и нулевого рабочего проводников. В электроустановках до 1 кВ с глухозаземленной нейтралью нулевой рабочий проводник может выполнять функции нулевого защитного проводника.

Рис. 1. Отличие защитного заземления и защитного «нуля»

Итак, прямо из терминов ПУЭ следует простой вывод. Различия между «землей» и «нулем» очень небольшие. На первый взгляд (сколько копий сломано на этом месте). По крайней мере, они обязательно должны быть соединены (или даже могут быть выполнены «в одном флаконе»). Вопрос только, где и как это сделано.

Попутно отметим п. 1.7.33.

Заземление или зануление электроустановок следует выполнять:

  • при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока — во всех электроустановках (см. также 1.7.44 и 1.7.48);
  • при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока — только в помещениях с повышенной опасностью, особо опасных и в наружных установках.

Иначе говоря, заземлять или занулять устройство, подключенное к напряжению 220 вольт переменного тока совсем не обязательно. И в этом нет ничего особо удивительного — третьего провода в обычных советских розетках реально не наблюдается. Можно сказать, что вступающий на практике в свои права Евростандарт (или близкая к нему новая редакция ПУЭ) лучше, надежнее, и безопаснее. Но по старому ПУЭ у нас в стране жили десятки лет. И что особенно важно, дома строили целыми городами.

Однако, когда речь идет о заземлении, дело не только в напряжении питания. Хорошая иллюстрация этого — ВСН 59-88 (Госкомархитектуры) «Электрооборудование жилых и общественных зданий. Нормы проектирования» Выдержка из главы 15. Заземление (зануление) и защитные меры безопасности:

15.4. Для заземления (зануления) металлических корпусов бытовых кондиционеров воздуха, стационарных и переносных бытовых приборов класса I (не имеющих двойной или усиленной изоляции), бытовых электроприборов мощностью св. 1,3 кВт, корпусов трехфазных и однофазных электроплит, варочных котлов и другого теплового оборудования, а также металлических нетоковедущих частей технологического оборудования помещений с мокрыми процессами следует применять отдельный проводник сечением, равным фазному, прокладываемый от щита или щитка, к которому подключен данный электроприемник, а в линиях питающих медицинскую аппаратуру, — от ВРУ или ГРЩ здания. Этот проводник присоединяется к нулевому проводнику питающей сети. Использование для этой цели рабочего нулевого проводника запрещается.

Получается нормативный парадокс. Одним из видимых на бытовом уровне результатов стало комплектование стиральных машин «Вятка-автомат» моточком одножильного алюминиевого провода с требованием выполнить заземление (руками сертифицированного специалиста).

И еще один интересный момент. 1.7.39. В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается.

Практически это означает — хочешь «заземлить» — сначала «занули». Кстати, это имеет прямое отношение к знаменитому вопросу «забатареивания» — которое по совршенно непонятной причине ошибочно считается лучше зануления (заземления).

Следующий аспект, которые необходимо рассмотреть — числовые параметры заземления. Так как физически это не более чем проводник (или множество проводников), то главной его характеристикой будет сопротивление.

1.7.62. Сопротивление заземляющего устройства, к к оторому присоединены нейтрали генераторов или трансформаторов или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений нулевого провода ВЛ до 1 кВ при количестве отходящих линий не менее двух. При этом сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более: 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Для меньшего напряжения допустимо большее сопротивление. Это вполне понятно — первая цель заземления — обеспечить безопасность человека в классическом случае попадания «фазы» на корпус электроустановки. Чем меньше сопротивление, тем меньшая часть потенциала может оказаться «на корпусе» в случае аварии. Следовательно, в первую очередь нужно снижать опасность для более высокого напряжения.

Дополнительно нужно учитывать, что заземление служит и для нормальной работы предохранителей. Для этого необходимо, что бы линия при пробое «на корпус» существенно изменяла свойства (прежде всего сопротивление), иначе срабатывания не произойдет. Чем больше мощность электроустановки (и потребляемое напряжение), тем ниже ее рабочее сопротивление, и соответственно должно быть ниже сопротивление заземления (иначе при аварии предохранители не сработают от незначительного изменения суммарного сопротивления цепи).

Следующий нормируемый параметр — сечение проводников.

1.7.76. Заземляющие и нулевые защитные проводники в электроустановках до 1 кВ должны иметь размеры не менее приведенных в табл. 1.7.1 (см. также 1.7.96 и 1.7.104).

Приводить всю таблицу не целесообразно, достаточно выдержки:

Для неизолированных медных минимальное сечение составляет 4 кв. мм, для алюминиевых — 6 кв. мм. Для изолированных, соответственно, 1,5 кв. мм и 2,5 кв. мм. Если заземляющие проводники идут в одном кабеле с силовой проводкой, их сеч ение может составлять 1 кв. мм для меди, и 2,5 кв. мм для алюминия.

Заземление в жилом доме

В обычной «бытовой» ситуации пользователи электросети (т.е. жильцы) имеют дело только с Групповой сетью ( 7.1.12 ПУЭ. Групповая сеть — сеть от щитков и распределительных пунктов до светильников, штепсельных розеток и других электроприемников ). Хотя в старых домах, где щитки установлены прямо в квартирах, им приходится сталкиваться с частью Распределительной сети ( 7.1.11 ПУЭ. Распределительная сеть — сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов и щитков ). Это желательно хорошо понимать, ведь часто «ноль» и «земля» отличаются только местом соединения с основными коммуникациями.

Из этого в ПУЭ сформулировано первое правило заземления:

7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего ос вещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный — L, нулевой рабочий — N и нулевой защитный — РЕ проводники). Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий. Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим.

Т.е. от этажного, квартирного или группового щитка нужно прокладывать 3 (три) провода, один из которых защитный нуль (совсем не земля). Что, впрочем, вовсе не мешает использовать ее для заземления компьютера, экрана кабеля, или «хвостика» грозозащиты. Вроде бы все просто, и не совсем понятно, зачем углубляться в такие сложности.

Можно посмотреть на свою домашнюю розетку. И с вероятностью около 80% не увидеть там третьего контакта. Чем отличается нулевой рабочий и нулевой защитный проводники? В щитке они соединяются на одной шине (пусть не в одной точке). Что будет, если использовать в данной ситуации рабочий ноль в качестве защитного?

Предполагать, что нерадивый электрик перепу тает в щитке фазу и ноль, сложно. Хоть этим постоянно пугают пользователей, но ошибиться невозможно в любом состоянии (хотя бывают уникальные случаи). Однако «рабочий ноль» идет по многочисленным штробам, вероятно проходит через несколько распределительных коробочек (обычно небольшие, круглые, смонтированы в стене недалеко от потолка).

Перепутать фазу с нулем там уже намного проще (сам это делал не раз). А в результате на корпусе неправильно «заземленого» устройства окажется 220 вольт. Или еще проще — отгорит где-то в цепи контакт — и почти те же 220 пройдут на корпус через нагрузку электропотребителя (если это электроплита на 2-3 кВт, то мало не покажется).

Для функции защиты человека — прямо скажем, никуда не годная ситуация. Но для подключения заземления грозозащиты типа APC не фатальная, так как там установлена высоковольтная развязка. Впрочем, рекомендовать такой способ было бы однозначно неправильно с точки зрения безопасности. Хотя надо признать, что нарушается эта норма очень часто (и как правило без каких-либо неблагоприятных последствий).

Надо отметить, что грозозащитные возможности рабочего и защитного нуля примерно равны. Сопротивление (до соединительной шины) от личается незначительно, а это, пожалуй, главный фактор, влияющий на стекание атмосферных наводок.

Из дальнейшего текста ПУЭ можно заметить, что к нулевому защитному проводнику нужно присоединять буквально все, что есть в доме:

7.1.68. Во всех помещениях необходимо присоединять открытые проводящие части светильников общего освещения и стационарных электроприемников (электрических плит, кипятильников, бытовых кондиционеров, электрополотенец и т.п.) к нулевому защитному проводнику.

Вообще, это проще представить следующей иллюстрацией:

Рис. 2. Схема заземления

Картина довольна необычная (для бытового восприят ия). Буквально все, что есть в доме, должно быть заземлено на специальную шину. Поэтому может возникнуть вопрос — ведь жили без этого десятки лет, и все живы-здоровы (и слава Богу)? Зачем все так серьезно менять? Ответ простой — потребителей электричества становится больше, и они все мощнее. Соответственно, риски поражения вырастают.

Но зависимость безопасности и стоимости величина статистическая, и экономию никто не отменял. Поэтому слепо класть по периметру квартиры медную полосу приличного сечения (вместо плинтуса), заводя на нее все, вплоть до металлических ножек стула, не стоит. Как не стоит ходить в шубе летом, и постоянно носить мотоциклетный шлем. Это уже вопрос адекватности.

Так же в область ненаучного подхода стоит отнести самостоятельное рытье траншей под защитный контур (в городском доме кроме проблем это заведомо ничего не принесет). А для желающих все же испытать все прелести жизни — в первой главе ПУЭ есть нормативы на изготовление этого фундаментального сооружения (в совершено прямом смысле этого слова).

Подводя итоги вышесказанному, можно сделать следующие практические выводы:

  • Если Групповая сеть выполнена тремя проводами, для заземления/зануления можно использовать защитный ноль. Он, собственно, для того и придуман.
  • Если Групповая сеть выполнена двумя проводами, желательно завести защитный нулевой провод от ближайшего щитка. Сечение провода должно быть более, чем фазного (точнее можно справиться в ПУЭ).

Статьи и схемы

Полезное для электрика

Заземление и зануление в чем разница, и как обеспечить безопасную эксплуатацию электроприборов

Если вы самостоятельно организуете электроснабжение квартиры, офиса или гаража – значит, ответственность за безопасность лежит также на вас. Для защиты электросетей и вашего здоровья (а иногда и жизни) применяется заземление и зануление.

В каком случае востребована защита?

При физическом (точнее – электрическом) контакте с корпусом фазного проводника, или элемента схемы, на который в данный момент подано напряжение – возникает две опасности:

  1. Поражение электрическим током. При случайном или намеренном (возникшем в процессе эксплуатации установки) прикосновении, электрический ток будет протекать через ваше тело. Между фазой и «землей» (в буквальном смысле этого слова) возникает разность потенциалов, и вы выступаете в качестве проводника. Сопротивление тела человека не так велико, особенно если кожа увлажнена потовыми выделениями. Поэтому сила тока, протекающего через вас, достаточна для нанесения урона здоровью, а в ряде случаев приводит к смерти;

Чем отличается ноль от заземления

  • Короткое замыкание через компоненты электроустановки. Если напряжение появляется на несанкционированном участке схемы, как минимум может пострадать электроприбор. Восстановление иногда обходится дороже покупки нового. При нарушении целостности проводки часто возникает пожар. Ток, протекающий по проводам с малым сопротивлением, достигает величины, способной воспламенить изоляцию и другие элементы схемы.
  • Система заземления и зануления электрооборудования обеспечивает защиту от рассмотренных опасностей, или хотя бы минимизирует последствия. Многие неопытные доморощенные электрики путают эти два понятия. Или же намеренно пользуются рабочим нулем при организации заземления.

    Особенно это актуально в многоэтажках старой постройки, где отдельного контура заземления не предусмотрено. При полностью исправных линиях подвода электроэнергии, это не так опасно. Однако при повреждении нулевого провода на магистрали, или ухудшении контакта на клеммных соединениях, рабочий ноль теряет электрическую связь с реальной «землей».

    Вы надеетесь на защиту от фазы, и без опаски работаете с электроприбором. В критический момент защита не срабатывает, и в лучшем случае происходит порча оборудования, а в худшем – пожар или поражение человека электрическим током.

    Важно! Использовать рабочий ноль в качестве защиты пользователей – запрещено!

    Защитное заземление и зануление принципиально отличаются по способу соединения с физической землей. Если использовать ноль, как заземление, могут произойти неприятности:

    • Например, вы заземлили бойлер на рабочий ноль. В случае пробоя фазы на корпус, устройство защитного отключения (УЗО) может не сработать. Через воду, из-под горячего крана, напряжение передается на вас. Если вы находитесь в ванной, через вас будет протекать электрический ток, опасный для жизни;
    • Вы пользуетесь электроплитой, расположенной рядом с батареей отопления. Система подачи горячей воды проложена в грунте, и имеет надежный контакт с землей. Если электроплита не имеет заземления, либо заземлена на ноль, в случае повреждения нулевого провода на корпусе может появиться фаза. При одновременном касании руками корпуса под напряжением, и заземленной батареи – поражение электротоком гарантировано.

    Заземление и зануление, в чем разница?

    Чем отличается ноль от заземления

    Заземление.
    Контур монтируется отдельно, вне зависимости от способа подключения рабочего энергоснабжения. На противоположном конце (от электроустановки) подключается заземляющее устройство. От него должен быть проложен проводник с надежным контактом. Этот проводник соединяется с корпусом электроустановки.

    Как правило, в домашних условиях отдельного контакта на корпусе электроустановки не предусмотрено. Сетевой кабель имеет три жилы: фаза, ноль и «земля». Рабочее заземление подключено к соответствующей контактной группе в электрической розетке. При подключении электроприбора, происходит одновременное соединение с питающими контактами и «землей».

    Важно! Такой способ подключения является единственно возможным с точки зрения безопасности.

    Зануление.
    Система электропитания имеет фазные и нулевые проводники. В случае однофазного питания (традиционные 220 вольт в нашей розетке), это нулевой провод от ближайшей трансформаторной подстанции. Он имеет непосредственный контакт с реальной «землей», в непосредственной близости от трансформатора. Такой вывод называется глухозаземленным.

    При организации трехфазного питания – нулем будет являться нейтральный вывод трансформатора. Принцип подключения такой же. Нейтраль имеет непосредственный контакт с «землей» в пределах трансформаторной подстанции.

    Чем отличается ноль от заземления

    Чем отличается заземление от зануления с точки зрения защиты?

    При кажущейся схожести, эти два способа принципиально отличаются по способу защиты. Причем основные споры возникают вокруг возможности заменить один способ другим, или вообще организовать заземление и зануление в одной электроустановке.

    Внимание! Забегая вперед, сразу определим: объединять или заменять заземление занулением, или наоборот – нельзя.

    Рассмотрим принцип действия этих способов защиты, и вам станет понятно, почему.

    Что происходит в нештатной ситуации с заземленной электроустановкой или при отсутствии заземления?

    Предположим, что на металлический корпус электроприбора попадает фаза. Это может произойти при сильном увлажнении, повреждении изоляции, обрыве крепления монтажной платы и соединении токоведущих частей с корпусом. Короткого замыкания не происходит, питание продолжает поступать.

    Вы касаетесь рукой корпуса, и через вас начинает протекать электрический ток. Его сила зависит от влажности кожи, от того, во что вы обуты, и на чем вы стоите.

    Проще говоря – если вы только что вышли из душа, встали босиком на кафельный пол, и схватились рукой за полотенце-сушилку с фазой на корпусе – сила тока может быть смертельно опасной. А если вы обуты в резиновые сапоги, стоите на деревянном полу и в помещении относительно сухой воздух – то можно не почувствовать никаких неприятных ощущений.

    Чем отличается ноль от заземления

    Если электроприбор заземлен, неважно каким способом, на корпус или через штатную вилку – основной ток потечет через землю, поскольку сопротивление там значительно ниже, чем у тела человека. Подключение к заземлителю находится непосредственно на корпусе, поэтому надежность не вызывает опасений.

    Единственная опасность такого способа защиты – электрооборудование может выйти из строя. Питание, как правило, не прерывается, поскольку сопротивление физической «земли» недостаточно для короткого замыкания и срабатывания защитного автомата.

    Следующий вариант защиты – зануление.
    Корпус прибора подключен к рабочему нулю или нейтрали трехфазного трансформатора. При возникновении пробоя фазы на корпус, через рабочий ввод питания начинает протекать ток, стремящийся к бесконечности. Его величина ограничена лишь мощностью точки энергоснабжения.

    Эта ситуация называется «коротким замыканием». Резкий скачок значения тока приводит к моментальному срабатыванию автомата, через который организовано питание. Или к перегоранию предохранителей.

    Внимание! Пример показывает, насколько важно иметь работоспособные предохранительные системы.

    Чем отличается ноль от заземления

    Фактически, неисправная электроустановка моментально обесточивается, и опасность поражения электрическим током отсутствует.

    Подводный камень в том, что при отсоединении рабочего нуля от реального заземлителя или от нулевого контакта – защита пропадает.

    Несмотря на отличие заземления от зануления, они выполняют схожую функцию – защищают пользователя от поражения электротоком. А какой вариант выбрать – зависит от особенностей энергоснабжения вашего помещения.

    Поделиться с друзьями:

    Источники: http://samelectrik.ru/dlya-chego-nuzhny-faza-nol-i-zazemlenie.html, http://electricalschool.info/main/electrobezopasnost/71-samyjj-skandalnyjj-vopros-zazemlenie.html, http://obinstrumente.ru/elektronika/zazemlenie-i-zanulenie-raznica.html

    Рейтинг
    ( Пока оценок нет )
    Всё об электрике в доме
    Добавить комментарий