Закон Ома для участка цепи: формула, определение и решение задач

Первоначальная и современная формулировка

Этот, на первый взгляд, простой закон был сформулирован немецким физиком Георгом Омом в 1826 году. Соответствующую научную статью он опубликовал в следующем году.

Интересно отметить, что появление этой работы не вызвало ажиотажа. Научная общественность оценила открытие Ома лишь после публикации работ физика Пулье аналогичного содержания в 1830 году. В 1833 Ом получил степень доктора в Нюрнбергском университете. В 1872 году единица измерения сопротивления стала называться Омом. В самой простой форме закон для участка цепи звучит так:

Закон Ома

Закон носит эмпирический характер, так как он выражает обобщенный анализ большого количества опытных данных.

Сейчас формула закона Ома для полной электрической цепи имеет следующий вид:

I = ℰ / (R+r).

Здесь:

  • ℰ — ЭДС источника напряжения, В;
  • I — сила тока в цепи, А.
  • R — общее сопротивление всех внешних элементов цепи, Ом;
  • r — внутреннее сопротивление источника напряжения, Ом.

Закон ома для полной цепи схема

Закон Ома для полной цепи учитывает полное сопротивление, которое представляет собой сумму сопротивления цепи R и внутреннего сопротивления источника тока r.

Ток в проводнике

Георг Ом первоначально сформулировал его по-другому. Закон Ома для замкнутой цепи выглядел так:

X = a / ( b + l ), где

  • a — величина, характеризующая источник тока. Сейчас говорят, что это электродвижущая сила источника тока;
  • b представляет собой свойство электрической установки, которое теперь рассматривается в качестве внутреннего сопротивления источника тока;
  • l — величина, зависящая от длины используемых проводов (в современных терминах она соответствует сопротивлению электрической цепи).

Как видно, закон Ома, применяемый для полной электрической цепи, в обоих вариантах имеет одинаковую формулировку.

Формулы для расчета параметров электроцепи

Также применяется закон Ома в дифференциальной форме. В данном случае рассматриваются очень малые величины. Но это позволяет применять интегральное и дифференциальное исчисление для сложных случаев.

Как звучит закон Ома для участка цепи

Есть говорить об официальной формулировке, то закон Ома можно озвучить так:

Сила тока имеет прямую зависимость от напряжения и обратную от сопротивления. Это высказывание справедливо для участка цепи с каким-то определенным и стабильным сопротивлением.

Формула этой зависимости на рисунке. Тут I — это сила тока, U — напряжение, R — сопротивление.

Формула закона Ома

Формула закона Ома

  • Чем больше напряжение, тем больше ток.
  • Чем больше сопротивление, тем ток меньше.

Не так легко представить себе смысл этого выражения. Ведь электричество нельзя увидеть. Мы только приблизительно знаем что это такое. Попытаемся уяснить себе смысл этого закона при помощи аналогий.

Закон Ома для участка цепи без ЭДС

Может быть сформулирован через сопротивление [1, стр.33][2, стр.15]:

begin{equation} I = {U_{ab}over R}; end{equation}

Где:

  • I — ток через участок ab электрической цепи;
  • Uab — напряжение на участке ab электрической цепи;
  • R — сопротивление участка ab электрической цепи.

Или через проводимость:

begin{equation} I = U_{ab} × G; end{equation}

Где:

  • G — проводимость участка ab электрической цепи.

Формула (1, 2) справедлива для электрической цепи представленной ниже на рисунке 1.

Рисунок 1 — Участок цепи без ЭДС

Закон Ома для участка цепи содержащего ЭДС

Или обобщённый закон Ома. Формулируется следующим образом [1, стр.34][2, стр.17]:

begin{equation} I = {U_{ab} + Eover R}; end{equation}

Где:

  • I — ток через участок ac электрической цепи;
  • Uab — напряжение на участке ab электрической цепи;
  • E — ЭДС на участке bс электрической цепи;
  • R — сопротивление участка ab электрической цепи.

Или через проводимость:

begin{equation} I = {(U_{ab} + E) × G}; end{equation}

Где:

  • G — проводимость участка ab электрической цепи.

Формула (3, 4) справедлива для электрической цепи представленной ниже на рисунке 2.

Рисунок 2 — Участок цепи содержащий ЭДС

Разбираемся что такое ток и сопротивление

Начнем с понятия электрического тока. Если говорить коротко, электрический ток применительно к металлам — это направленное движение электронов — отрицательно заряженных частиц. Их обычно представляют в виде небольших кружочков. В спокойном состоянии они передвигаются хаотически, постоянно меняя свое направление. При определенных условиях — возникновении разницы потенциалов — эти частицы начинают определенное движение в какую-то сторону. Вот это движение и есть электрический ток.

Чтобы было понятнее,  можно сравнить электроны с водой, разлитой на какой-то плоскости. Пока плоскость неподвижна, вода не движется. Но, как только появился наклон (возникла разница потенциалов), вода пришла в движение. С электронами примерно так же.

Примерно так можно себе представить электрический ток

Примерно так можно себе представить электрический ток

Теперь надо понять, что такое сопротивление и почему с силой тока у них обратная связь: чем выше сопротивление, тем меньше ток. Как известно, электроны движутся по проводнику. Обычно это металлические провода, так как металлы обладают хорошей способностью проводить электрический ток. Мы знаем, что металл имеет плотную кристаллическую решетку: много частиц, которые расположены близко и связаны между собой. Электроны, пробираясь между атомами металла, на них наталкиваются, что затрудняет их движение. Это помогает проиллюстрировать сопротивление, которое оказывает проводник. Вот теперь становится понятным, почему, чем выше сопротивление, тем меньше сила тока — чем больше частиц, тем электронам сложнее преодолевать путь, делают они это медленнее. С этим, вроде, разобрались.

Если у вас есть желание проверить эту зависимость опытным путем, найдите переменный резистор, соедините последовательно резистор — амперметр — источник тока (батарейка). Еще желательно в цепь вставить выключатель — обычный тумблер.

Цепь для проверки зависимости силы тока от сопротивления

Цепь для проверки зависимости силы тока от сопротивления

Крутя ручку резистора вы изменяете сопротивление. При этом показания на амперметре, который измеряет силу тока, тоже меняются. Причем чем больше сопротивление, тем меньше отклоняется стрелка — меньше ток. Чем сопротивление меньше — тем сильнее отклоняется стрелка — ток больше.

Вместо стрелочного прибора можно использовать цифровой мультиметр в режиме измерения постоянного тока. В этом случае отслеживаются показания на жидкокристаллическом цифровом табло.

Зависимость тока от сопротивления почти линейная, то есть на графике отражается почти прямой линией. Почему почти — об этом надо говорить отдельно, но это другая история.

Когда «сопротивление бесполезно»

Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.

А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.

Ток идет по пути наименьшего сопротивления.

Теперь давайте посмотрим на закон Ома для участка цепи еще раз.

Закон Ома для участка цепи

I = U/R

I — сила тока [A]

U — напряжение [В]

R — сопротивление [Ом]

Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.

То есть:

I = U/0 = ∞

Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.

Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.

Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.

Что изменится для полной цепи

В ситуации выше рассмотрен только некоторый участок цепи, обладающий каким-то фиксированным сопротивлением. Мы предполагаем, что при определенных условиях электроны начнут движение. Причина этого движения — тот самый груз на картинке. В реальных условиях это — источник тока. Это может быть батарейка, генератор постоянного тока, подключенный шнур блока питания и т.д. При подключении источника питания к проводнику в нем начинает протекать ток. Это мы тоже знаем и наблюдаем, когда включаем лампу в сеть, ставим заряжаться мобильный телефон и т.д.

Полная цепь включает в себя источник питания

Полная цепь включает в себя источник питания

Участок цепи имеет какое-то сопротивление. Это понятно. Но источник  питания тоже имеет сопротивление. Его обычно обозначают маленько буквой r. Так как ток бежит по кругу, ему приходится преодолевать сопротивление провода и сопротивление источника тока. Вот это суммарное сопротивление цепи и источника питания — называют импеданс. Говорят еще что это комплексное сопротивление. В формуле Ома для полной цепи его отображают при помощи суммы. В знаменателе стоит сумма сопротивлений цепи и внутреннего сопротивления источника тока (R + r).

Всем, наверное, понятно, что именно источник тока создает нужные условия для движения электронов. Все благодаря тому, что он обладает ЭДС — электродвижущей силой. Эта величина обозначается обычно E. Чем больше эта сила, тем больше ток. Это тоже, вроде, понятно. Поэтому обозначение ЭДС — латинскую букву E — ставят в числитель. Таким образом, формулировка закона Ома для полной цепи звучит так:

Сила тока прямо пропорциональна ЭДС источника тока и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника тока.

Вроде не слишком сложно, но можно попробовать еще проще:

  • Чем выше ЭДС источника тока, тем больше ток.
  • Чем больше суммарное сопротивление, тем ток меньше.

Формула закона Ома для полной цепи

Фото формула закона Ома для полной цепи

  • R – внешнее сопротивление [Ом];
  • r – сопротивление источника ЭДС (внутреннее) [Ом];
  • I – сила тока [А];
  • ε– ЭДС источника тока [В].

Рассмотрим некоторые задачи на данную тему. Задачи на закон Ома для полной цепи, как правило, дают ученикам 10 класса, чтобы они могли лучше усвоить указанную тему.

I. Определите силу тока в цепи с лампочкой, сопротивлением 2,4 Ом и источником тока, ЭДС которого равно 10 В, а внутреннее сопротивление 0,1 Ом.

По определению закона Ома для полной цепи, сила тока равна:

Задача формула закона Ома для полной цепи

II. Определить внутреннее сопротивление источника тока с ЭДС 52 В. Если известно, что при подключении этого источника тока к цепи с сопротивлением 10 Ом амперметр показывает значение 5 А.

Запишем закон Ома для полной цепи и выразим из него внутреннее сопротивление:

Внутренее сопротивление по закону Ома для полной цепи

III. Однажды школьник спросил у учителя по физике: «Почему батарейка садится?» Как грамотно ответить на данный вопрос?

Мы уже знаем, что реальный источник обладает собственным сопротивлением, которое обусловлено либо сопротивлением растворов электролитов для гальванических элементов и аккумуляторов, либо сопротивлением проводников для генераторов. Согласно закону Ома для полной цепи:

Задача формула закона Ома для полной цепи

следовательно, ток в цепи может уменьшаться либо из-за уменьшения ЭДС, либо из-за повышения внутреннего сопротивления. Значение ЭДС у аккумулятора почти постоянный. Следовательно, ток в цепи понижается за счет повышения внутреннего сопротивления. Итак, «батарейка» садится, так как её внутреннее сопротивление увеличивается.

Как найти сопротивление, напряжение

Зная формулу закона Ома для участка цепи, мы можем рассчитать напряжение и сопротивление. Напряжение находится как произведение силы тока и сопротивления.

Формула напряжения и сопротивления по закону Ома

Формула напряжения и сопротивления по закону Ома

Сопротивление можно найти, разделив напряжение на ток. Все действительно несложно. Если мы знаем, что к участку цепи было проложено определенное напряжение и знаем какой при этом был ток, мы можем рассчитать сопротивление. Для этого напряжение делим на ток. Получаем как раз величину сопротивления этого куска цепи.

С другой стороны, если мы знаем сопротивление и силу тока, которая должна быть, мы сможем рассчитать напряжение. Надо всего лишь перемножить силу тока и сопротивление. Это даст напряжение, которое необходимо подать на этот участок цепи чтобы получить требуемый ток.

Найти силу тока

{I= dfrac{U}{R}}

Сила тока (I) в проводнике прямо пропорциональна напряжению (U) на его концах и обратно пропорциональна его сопротивлению (R).

Формула для нахождения силы тока по закону Ома, если известны напряжение и сопротивление:

{I= dfrac{U}{R}}, где I — сила тока, U — напряжение, R — сопротивление.

Найти напряжение

{U= I cdot R}

Падение напряжение на проводнике равно произведению сопротивления проводника на силу тока в нем.

Формула для нахождения напряжения по закону Ома, если известны сила тока и сопротивление:

{U= I cdot R}, где U — напряжение, I — сила тока, R — сопротивление.

Найти сопротивление

{R= dfrac{U}{I}}

Сопротивление проводника прямо пропорционально напряжению на его концах и обратно пропорционально величине силы тока, протекающего через него.

Формула для нахождения сопротивления по закону Ома, если известны сила тока и напряжение:

{R= dfrac{U}{I}}, где R — сопротивление, U — напряжение, I — сила тока.

Параллельное и последовательное соединение

В электрике элементы соединяются либо последовательно — один за другим, либо параллельно — это когда к одной точке подключены несколько входов, к другой — выходы от тех же элементов.

Закон Ома для параллельного и последовательного соединения

Закон Ома для параллельного и последовательного соединения

Последовательное соединение

Как работает закон Ома для этих случаев? При последовательном соединении сила тока, протекающая через цепочку элементов, будет одинаковой. Напряжение участка цепи с последовательно подключенными элементами считается как сумма напряжений на каждом участке. Как можно это объяснить? Протекание тока через элемент — это перенос части заряда с одной его части в другую. То есть, это определенная работа. Величина этой работы и есть напряжение. Это физический смысл напряжения. Если с этим понятно, двигаемся дальше.

Последовательное соединение и параметры этого участка цепи

Последовательное соединение и параметры этого участка цепи

При последовательном соединении приходится переносить заряд по очереди через каждый элемент. И на каждом элементе это определенный «объем» работы. А чтобы найти объем работы на всем участке цепи, надо работу на каждом элементе сложить. Вот и получается, что общее напряжение — это сумма напряжений на каждом из элементов.

Точно так же — при помощи сложения — находится и общее сопротивление участка цепи. Как можно это себе представить? Ток, протекая по цепочке элементов, последовательно преодолевает все сопротивления. Одно за другим. То есть чтобы найти сопротивление, которое он преодолел, надо сопротивления сложить. Примерно так. Математический вывод более сложен, а так понять механизм действия этого закона проще.

Параллельное соединение

Параллельное соединение — это когда начала проводников/элементов сходятся в одной точке, а в другой — соединены их концы. Постараемся объяснить законы, которые справедливы для соединений этого типа. Начнем с тока. Ток какой-то величины подается в точку соединения элементов. Он разделяется, протекая по всем проводникам. Отсюда делаем вывод, что общий ток на участке равен сумме тока на каждом из элементов: I = I1 + I2 + I3.

Теперь относительно напряжения. Если напряжение — это работа по перемещению заряда, тоо работа, которая необходима на перемещение одного заряда будет одинакова на любом элементе. То есть, напряжение на каждом параллельно подключенном элементе будет одинаковым. U = U1=U2=U3. Не так весело и наглядно, как в случае с объяснением закона Ома для участка цепи, но понять можно.

Законы для параллельного соединения

Законы для параллельного соединения

Для сопротивления все несколько сложнее. Давайте введем понятие проводимости. Это характеристика, которая показывает насколько легко или сложно заряду проходить по этому проводнику. Понятно, что чем меньше сопротивление, тем проще току будет проходить. Поэтому проводимость — G — вычисляется как величина обратная сопротивлению. В формуле это выглядит так: G = 1/R.

Для чего мы говорили о проводимости? Потому что общая проводимость участка с параллельным соединением элементов равна сумме проводимости для каждого из участков. G = G1 + G2 + G3 — понять несложно. Насколько легко току будет преодолеть этот узел из параллельных элементов, зависит от проводимости каждого из элементов. Вот и получается, что их надо складывать.

Теперь можем перейти к сопротивлению. Так как проводимость — обратная к сопротивлению величина, можем получить следующую формулу: 1/R = 1/R1 + 1/R2 + 1/R3.

Интегральная и дифференциальная формы закона

Все вышеизложенные моменты с расчетами применимы к условиям, когда в составе электрических схем используются проводники, так сказать, «однородной» структуры. Между тем на практике нередко приходится сталкиваться с построением схематики, где на различных участках структура проводников меняется. К примеру, используются провода большего сечения или, напротив, меньшего, сделанные на основе разных материалов.

[stextbox id=’warning’]Для учёта таких различий существует вариация, так называемого, «дифференциально-интегрального закона Ома». Для бесконечно малого проводника рассчитывается уровень плотности тока в зависимости от напряженности и величины удельной проводимости.[/stextbox]

Под дифференциальный расчет берется формула: J = ό * E. Для интегрального расчета, соответственно, формулировка: I * R = φ1 – φ2 + έ Однако эти примеры скорее уже ближе к школе высшей математики и в реальной практике простого электрика фактически не применяются.

Закон Ома

Эмпирический характер закона Ома

При изучении природы электричества путем научных исследований происходит формулировка тех или иных законов. Они отличаются межу собой не только своим содержанием, но и тем, как были выведены. Некоторые законы представляют собой следствие из более общих утверждений, другие являются удачной попыткой объяснить многократно наблюдаемые факты.

Закон Ома для однородного участка фактически является попыткой создать правило, которое соответствует большому количеству наблюдений и экспериментов. Его формулировка на протяжении веков подтверждалась на практике, приобретая силу фундаментального закона физики. Закон Ома, представленный в интегральной форме, даёт возможность производить расчёты для различных электрических цепей.

Закон Ома в дифференциальной и интегральной формах

Где и когда можно применять закон Ома?

Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

Пример применения закона Ома

В этом примере лампочка накаливания подключена к источнику постоянного напряжения с U=12 В. Цель — определить сопротивление лампочки. Для измерения силы тока также имеется амперметр.

Первая часть задачи — определить силу тока с помощью амперметра. Для этого его необходимо правильно вставить в цепь. Поскольку мы будем вычислять электрический ток, который протекает через лампочку, амперметр должен быть подключен последовательно с ней.

Непосредственно после включения источника напряжения измеряется ток I, равный 1A. Сопротивление лампочки можно рассчитать по закону Ома:

R = U / I = 12В / 1А = 12 Ом.

Через некоторое время вы снова смотрите на амперметр и замечаете, что ток упал до 200 мА.

Сопротивление лампочки изменилось. Почему так произошло? Это связано с разной температурой в момент включения и во время обычной работы, так как лампочка нагревается. Поэтому сопротивление холодной лампы ниже, чем теплой. Именно поэтому лампочку часто называют терморезистором.

Источники
  • https://ProFazu.ru/knowledge/electrical/zakon-oma.html
  • https://elektroznatok.ru/info/teoriya/zakon-oma
  • https://AllOfEnergy.ru/11-gruntovye-plotiny
  • https://skysmart.ru/articles/physics/zakon-oma
  • https://zakon-oma.ru/dlya-polnoj-cepi.php
  • https://mnogoformul.ru/zakon-oma
  • https://ElectroInfo.net/teorija/vse-o-zakone-oma-prostymi-slovami-s-primerami-dlja-chajnikov.html
  • https://toe.1c-umi.ru/lekcii/lekciya_6_-_zakon_oma/
  • https://www.asutpp.ru/zakon-oma-dlya-uchastka-tsepi.html

Рейтинг
( Пока оценок нет )
Всё об электрике в доме