Принцип действия и устройство синхронного двигателя
Название синхронные относится к электрическим машинам переменного тока, в которых ротор и магнитное поле статора вращаются с одной и той же скоростью, т.е. синхронно.
Как и все электрические машины синхронные машины обратимы и могут работать как в режиме генератора, так и в режиме двигателя. Трехфазные синхронные машины это обычно машины большой мощности.
По устройству статора синхронная машина не отличается от асинхронной. Обмотка статора обычно соединяется звездой. Отличие синхронной машины от асинхронной заключается в различной конструкции ротора.
Ротор синхронной машины представляет собой постоянный магнит. В машинах средней и большой мощности ротор превращается в постоянный магнит с помощью электрического тока, т.е. это электромагнит. Для этого на роторе располагается отдельная обмотка (сосредоточенная), которая называется обмоткой возбуждения, по ней протекает постоянный ток, который называется током возбуждения. Обмотка ротора вращается вместе с ротором, поэтому требуется устройство подвода тока. На роторе располагается 2 медных кольца, к которым подсоединены выводы обмотки ротора, к неподвижной части крепятся графитовые щетки в щеткодержателях, эти щетки скользят по кольцам, обеспечивая контакт.
Источник постоянного тока, служащий для создания тока возбуждения обычно называется возбудителем. В качестве возбудителя используется генератор постоянного тока, генератор переменного тока с выпрямителем, полупроводниковый выпрямитель управляемый или не управляемый.
По конструкции ротора синхронные машины делятся на два типа:
· машины, имеющие ротор с неявно выраженными полюсами, в этом случае ротор имеет вид гладкого цилиндра.
· синхронные машины, имеющие ротор с явно выраженными полюсами. Такой ротор делается в тихоходных машинах с большим числом пар полюсов.
Формула электромагнитного момента такая же как и для асинхронного двигателя:
Синхронный двигатель, как и асинхронный имеет физическое ограничение по моменту. Если к валу ротора приложить тормозной момент, то двигатель его преодолеет, но оси полюсов ротора и статора разойдутся на некоторый угол.
Изобразим условно вращающееся магнитное поле в виде магнита.
При увеличении момента сопротивления увеличивается угол расхождения полюсов ротора и статора.
Обычно угол Θ берут ≤ 30°, поэтому перегрузочная способность синхронного двигателя: больше чем у асинхронного двигателя.
Перегрузочную способность можно изменить воздействуя на ток возбуждения увеличивая ток возбуждения Iв увеличивается магнитный поток Ф0. увеличивается ЭДС E0 и увеличивается максимальный момент Mмакс .
Механическая характеристика синхронного двигателя абсолютно жесткая, при любом моменте сопротивления скорость его вращения одна и та же. Если Mс ≥ Mмакс. двигатель такой момент не преодолеет и остановится.
185.154.22.117 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.
Главная | О нас | Обратная связь
Синхронные двигатели: устройство и принцип действия
Основные части синхронного двигателя – это якорь (статор, неподвижная часть) и индуктор (ротор), разделенные воздушной прослойкой. В пазы статора закладывают трехфазную распределенную обмотку – обычно она соединяется «звездой».
Рис. 2 Схема синхронного двигателя
С началом работы двигателя тока, подаваемые в якорь, создают вращение магнитного поля, которое пересекает поле индуктора, что в результате взаимодействия двух полей переходит в энергию. Поле якоря чаще называют иначе – поле реакции якоря. В генераторах такое получают при помощи индуктора. Входящие в состав индуктора электромагниты постоянного тока принято называть полюсами. При этом индукторы во всех синхронных двигателях могут исполняться по двум схемам – явнополюсной и неявнополюсной, различающиеся между собой расположением полюсов. Чтобы уменьшить значение магнитного сопротивления и тем самым улучшить условия для прохождения магнитного потока, применяют ферромагнитные сердечники. Они располагаются в статоре и роторе, для их изготовления используют специальную марку стали – электротехническую, отличающую высоким содержанием кремния – это позволяет уменьшить вихревые токи и повысить электрическое сопротивление стали.
Рис. 3. Магнитные поля в синхронном двигателе
В основу работы синхронного двигателя положен принцип взаимного влияния полюсов индуктора и магнитного поля, индуцируемого якорем. При запуске осуществляется разгон двигателя до частоты, которая близка по своему значению частоте, с которой происходит в зазоре вращение магнитного поля. Только при выполнении этого условия двигатель переходит в функционирование в синхронном режиме. В данный момент пересекаются магнитные поля, инициируемые индуктором и ротором. Этот момент в технической литературе принято называть входом в синхронизацию.
Работа синхронного двигателя наглядно представлена на видео:
Длительное время в качестве разгонного двигателя использовался стандартный синхронный двигатель, который был механически соединен с синхронным. Благодаря этому, ротор на синхронном двигателе механически разгонялся до подсинхронной скорости, а затем уже самостоятельно, за счет взаимодействия электромагнитных полей, втягивался в синхронизм. Обычно при подборе мощности пускового двигателя исходили из соотношения 10-15% от номинальной мощности разгоняемого двигателя. Такого запаса мощности вполне хватало запустить синхронный двигатель не только в холостую, но даже и при незначительной нагрузке на валу.
Рис. 4 Синхронный двигатель (1) с внешним разгонным (2) двигателем
Такой способ разгона усложняет и существенно удорожает общую стоимость, поэтому в современных двигателях от него отказались в пользу разгона в состоянии асинхронного режима. В этом случае с помощью реостата (короткозамкнутым путем) обмотки индуктора замыкают, как в асинхронном двигателе. Чтобы провести запуск двигателя в таком режиме, на ротор устанавливают короткозамкнутую обмотку, выступающую одновременно и как успокоительная обмотка, устраняющая во время проведения синхронизации раскачивание ротора. В момент, когда скорость вращения достигнет требуемого номинального значения, в индуктор будет подан постоянный ток. Но для двигателей, в которых стоят постоянные магниты, все равно придется для разгона использовать внешние двигатели.
В криогенных синхронных машинах используется так называемая обращенная конструкция, при которой размещение индуктора и якоря выполнено наоборот, т.е. индуктор расположен на статоре, а якорь – на роторе. В таких машинах обмотки возбуждения состоят из материалов, обладающими свойствами сверхпроводимости.
Принцип действия и конструкция синхронных двигателей
Синхронный двигатель. Устройство синхронной машины. Работа синхронного двигателя. Сравнение синхронных и асинхронных двигателей
Синхронные машины используются в качестве источников электрической энергии (генераторов), электродвигателей и синхронных компенсаторов. Именно с помощью синхронных трехфазных генераторов вырабатывается электрическая энергия на электростанциях.
Синхронные двигатели в силу особых свойств, не получили широкого распространения. Синхронные трехфазные двигатели применяются обычно лишь в установках средней и большой мощности при редких пусках, в случаях, когда не требуется электрического регулирования скорости.
Наряду с этим, в системах управления, измерения, записи и воспроизведения звука, особенно для привода лентопротяжных и регистрирующих устройств, широко применяются синхронные микродвигатели.
Трехфазные синхронные генераторы, двигатели и синхронные компенсаторы в принципе имеют одинаковое устройство.
Устройство синхронной машины
Рис. 1 Устройство синхронной машины с неявно выраженными полюсами (а ) и ротора машины с явно выраженными полюсами (б )
Неподвижная часть машины, называемая статором или якорем (рис. 1, а ), состоит из стального или чугунного корпуса 1, в котором закреплен цилиндрический сердечник 2 якоря.
Для уменьшения потерь на перемагничивание и вихревые токи сердечник набирают из листов электротехнической стали. В пазах сердечника якоря уложена трехфазных обмотка 3. В подшипниковых щитах, прикрепленных с торцевых сторон к корпусу, либо в стояках, закрепленных на фундаменте, расположены подшипники, несущие вал 4 вращающейся части машины – ротора или индуктора. На валу размещен цилиндрический сердечник 7 ротора, выполняемый из сплошной стали. В пазах сердечника ротора уложена обмотка возбуждения 8, питаемая постоянным током. Для присоединения обмотки возбуждения к внешней электрической цепи на валу укрепляют два изолированных друг от друга и от вала контактных кольца 6, к которым пружинами прижимаются неподвижные щетки 5. Обмотка 8 служит для возбуждения основного магнитного поля машины. Обмотка возбуждения с сердечником ротора представляют собой по существу электромагнит. Питание обмотки возбуждения осуществляется либо от генератора постоянного тока, вал которого механически связан с валом синхронной машины, либо через вентили от источника переменного тока. Мощность, необходимая для питания обмотки возбуждения, невелика и составляет 1 ÷ 3% от мощности машины.
На рис. 1, а показана двухполюсная синхронная машина с неявно выраженными полюсами ротора. Такие машины изготовляют на скорости 3000 об/мин. Синхронные машины, предназначенные для работы с меньшими скоростями (1500, 1000, 750 об/мин и т. д.), имеют явно выраженные полюса, число которых тем больше, чем меньше скорость. На рис. 1, б показано устройство ротора четырехполюсной машины с явно выраженными полюсами. Явно выраженные полюса 1 изготовляют из отдельных стальных листов или реже массивными и закрепляют на ободе 2 ротора с помощью винтов. Отдельные части (катушки) обмотки возбуждения 3, расположенные на явно выраженных полюсах, соединены между собой так, что северные и южные полюса чередуются.
Трехфазная обмотка якоря синхронных машин выполняется таким образом, что возбуждаемое ею вращающееся магнитное поле имеет всегда такое же число полюсов, как ротор.
Работа синхронного двигателя
При работе синхронной машины в качестве двигателя обмотка якоря подключается к трехфазному источнику переменного тока, в результате чего возникает вращающийся магнитный поток якоря Фя .
После разгона ротора двигателя до скорости n ≈ n0 его обмотка возбуждения подключается к источнику постоянного тока, и возникает магнитный поток Ф0. Благодаря взаимодействию вращающегося магнитного потока Фя и проводников обмотки ротора, питаемой постоянным током (или потоков Фя и Ф0 ) возникает вращающий момент, действующий на ротор, и он втягивается в синхронизм, т. е. начинает вращаться со скоростью n. равной скорости n0 вращающегося магнитного поля якоря.
При изменении нагрузки двигателя скорость вращения ротора остается постоянной (n = n0 ), однако положение ротора относительно вращающегося магнитного потока Фя изменяется. Так, при моменте статического сопротивления Мс = 0 ротор занимает положение относительно потока Фя . показанное на рис. 2, а .
Рис. 2 Возникновение крутящего момента синхронного двигателя
Момент двигателя в этом случае М = Мс = 0. Увеличение момента сопротивления Мс приводит к такому смещению ротора относительно потока Фя . при котором возникает вращающий момент М двигателя, уравновешивающий момент Мс (рис. 2, б )
Существенной особенностью синхронного двигателя является то, что вращающий момент возникает у него в том случае, когда скорость вращения ротора n равна скорости n0 вращающегося магнитного поля якоря Фя . Возникновение вращающего момента при равенстве скоростей n и n0 у синхронного двигателя объясняется тем, что ток в его обмотке возбуждения появляется вследствие питания обмотки возбуждения от источника постоянного тока.
Скорость вращающегося магнитного поля якоря, а значит, ротора синхронного двигателя определяется по формуле
Для получения различных скоростей синхронные двигатели изготовляют с различными числами пар полюсов p .
При частоте f = 50 Гц скорости вращения синхронных двигателей будут равны 3000, 1500, 1000, 755 об/мин и т. д.
Сравнение синхронных и асинхронных двигателей
Обмотки статора обоих двигателей получают питание от сети трехфазного переменного тока. Для питания обмотки возбуждения синхронного двигателя требуется, кроме того, источник электрической энергии постоянного тока, правда, относительно небольшой мощности.
Асинхронный пуск синхронных двигателей несколько сложнее пуска асинхронных двигателей с короткозамкнутым ротором. В отношении пусковых свойств асинхронные двигатели с фазным ротором имеют весьма существенные преимущества перед синхронными двигателями.
Частота вращения синхронных двигателей остается постоянной при изменении нагрузки, тогда как у асинхронных двигателей даже при их работе на естественной характеристике она несколько изменяется.
Асинхронные двигатели дают возможность регулировать частоту вращения различными способами (изменением числа пар полюсов, измерением частоты напряжение источника питания). Синхронные двигатели относятся к двигателям с нерегулируемой частотой вращения.
Воздействуя на ток возбуждения синхронного двигателя, можно в широких пределах изменять его коэффициент мощности. Можно, в частности, заставить синхронный двигатель работать с cosφ = 1, а также с опережающим током. Последнее может быть использовано для улучшения коэффициента мощности других потребителей, питающихся от той же сети. В отличие от этого асинхронный двигатель представляет собой активно-индуктивную нагрузку и имеет всегда cosφ < 1.
Из-за малых потерь мощности в роторе, а также в обмотке статора при работе с высоким cosφ к.п.д. синхронных двигателей оказывается больше, а масса и габаритные размеры меньше, чем у асинхронных двигателей.
Учитывая указанные достоинства синхронных двигателей, стараются везде, где это возможно, вместо асинхронных двигателей применять синхронные. Они применяются обычно в установках средней и большой мощности при редких пусках, в случаях, когда не требуется электрического регулирования частоты вращения. Синхронные двигатели используются, например, для привода насосов, компрессоров, вентиляторов, генераторов постоянного тока преобразовательных установок.
Похожие новости
Комментарии (0)
Источники: http://studopedia.ru/10_137215_printsip-deystviya-i-ustroystvo-sinhronnogo-dvigatelya.html, http://megaobuchalka.ru/6/50016.html, http://xn—-etb8afbn2f.xn--p1ai/electrical-engineering/23-princip-deystviya-i-konstrukciya-sinhronnyh-dvigateley.html