- Тепловая защита электродвигателя. Электротепловое реле.
- 1. Устройство и работа электротеплового реле.
- 2. Принципиальные схемы включения электротеплового реле.
- Понравилась статья — поделитесь с друзьями:
- Подключение магнитного пускателя с тепловым реле
- Особенности монтажа
- Схема с фазным напряжением (220 В)
- Схема с линейным напряжением (380 В)
- Тепловое реле. Устройство, принцип действия, схема включения теплового реле.
Тепловая защита электродвигателя. Электротепловое реле.
Здравствуйте уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.
Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ. которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.
1. Устройство и работа электротеплового реле.
Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.
Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:
1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.
Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.
Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.
Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.
По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96 ), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96 ) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.
В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.
Помимо поворотного регулятора на панели управления расположена кнопка «TEST », предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.
«Индикатор » информирует о текущем состоянии реле.
Кнопкой «STOP » обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98 ) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.
Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).
Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET » против часовой стрелки, при этом кнопка слегка приподнимается.
Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96 ) и (97 — 98 ) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET ».
Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.
Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.
При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:
Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.
2. Принципиальные схемы включения электротеплового реле.
В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1. через которые подается питание на электродвигатель.
При включении автоматического выключателя QF1 фаза «А », питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1. и остается дежурить на этих контактах. Схема готова к работе.
При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1 поступает на катушку магнитного пускателя КМ1. пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.
При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А », «В », «С » через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.
При увеличении тока нагрузки через силовые контакты термореле КК1. реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.
Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп ». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.
На фотографиях ниже показана часть монтажной схемы цепей управления:
Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96 ) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.
При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.
И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.
От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1. через которые запитывается электродвигатель.
При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп ».
Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.
И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.
Понравилась статья — поделитесь с друзьями:
Подключение магнитного пускателя с тепловым реле
Магнитный пускатель это, по сути, мощное реле специального назначения. Оно сконструировано для коммутации в электрических цепях с обмотками асинхронных двигателей. Это устройство не требует особых знаний для того, чтобы самостоятельно подключить его и пользоваться им. Тепловое реле это ещё одна специальная конструкция электромеханического устройства. Оно в паре с магнитным пускателем выполняет коммутации в электрических цепях, которые содержат обмотки асинхронных двигателей.
Особенности монтажа
Но при этом тепловое реле срабатывает в отличие от магнитного пускателя не по воле человека, а от перегрузки по току асинхронного двигателя. Его также можно без особых проблем задействовать своими руками в схеме управления асинхронным движком. В связи с этим не будет лишним напомнить умельцам о том, что любые работы по присоединению электрических цепей к сети должны начинаться с гарантированного отключения напряжения в месте подключения с последующим контролем этого индикаторной отвёрткой или тестером.
- Чтобы правильно подключить магнитный пускатель и тепловое реле надо вначале определить величину напряжения, на которое они рассчитаны. Его значение указывается как в техническом паспорте, так и на шильдике, расположенном на корпусе устройства.
- Если указано напряжение 220 В устройство необходимо подключать к фазному напряжению, то есть к фазному и нулевому проводам. Если указано напряжение 380 В для подключения используется линейное напряжение, то есть к фазным проводам двух любых фаз.
- Если напряжение не будет соответствовать паспортным данным устройства, возможна, либо его порча от перегрева, либо неправильная работа по причине недостаточно сильного магнитного поля в катушке управления.
Особенностью работы магнитного пускателя является его контакт, который, замыкаясь, шунтирует кнопку включения его управляющей катушки. Это позволяет выполнять коммутацию электрических цепей кратковременным нажатием кнопки «пуск», что удобно и легко для пользователя. При подключении пускателя надо будет присоединять нормально разомкнутый контакт и нормально замкнутый контакт. Их вид в самом устройстве и на электрической схеме показан на изображении. Они используются для управления катушкой пускателя и располагаются в управляющем блоке пускателя. Он называется «кнопочный пост». В нём установлены две кнопки. Каждая из них приводит в действие: одна нормально замкнутый контакт и одна нормально разомкнутый контакт. Кнопки окрашены обычно в чёрный цвет (используется для пуска или реверса), и в красный цвет (используется для остановки двигателя отключением катушки пускателя).
Схема с фазным напряжением (220 В)
Напряжение для питания цепи управления катушки КМ1 магнитного пускателя поступает от фазы L3 и нейтрали N. Контакты кнопок для управления работой катушки соединяются последовательно. Это даёт возможность контакту SB2 приводимому в действие кнопкой «пуск» замкнуть электрическую цепь. Катушка приведёт в действие контакты КМ1 и они замкнут цепи с обмотками двигателя. На обмотках двигателя появится напряжение, и его вал начнёт вращение. Остановка двигателя возможна либо при срабатывании теплового реле, либо при нажатии на кнопку «стоп», которая разомкнёт цепь катушки КМ1.
Контакт Р теплового реле размыкается из-за нагрева специального элемента, расположенного в нём. При увеличении тока усиливается и нагрев этого элемента. Тепловое реле пропускает через каждую пару своих клемм ток одной из фаз движка. При этом с каждой парой клемм связан соответствующий нагревающийся элемент. При достижении заданной температуры, которая соответствует заданной электрической мощности, от механического воздействия нагретого элемента срабатыванием контакта Р катушка КМ1 обесточивается. Температурная деформация элементов достигается применением биметаллических материалов.
Контакты КМ1 размыкают электрические цепи с обмотками асинхронного двигателя который после этого останавливается. Конструктивно разные модели тепловых реле могут отличаться друг от друга конструкцией основных шести клемм, устройством нагревающихся элементов, контактов и дополнительных регуляторов. Поэтому при инсталляции тепловых реле необходимо подключать и настраивать их в соответствии с техническим паспортом и сопроводительной документацией.
Схема с линейным напряжением (380 В)
Как видно из схемы напряжение для электрической цепи катушки КМ1 получается от двух фазных проводов L2 и L3. Напряжение между ними для трёхфазной электрической сети составляет 380 В. Других отличий, как в соединениях элементов схемы, так и в её работе в сравнении со схемой с фазным напряжением, нет.
Тепловое реле. Устройство, принцип действия, схема включения теплового реле.
Биметаллическая пластина состоит из двух металлов, прочно сваренных между собой по всей поверхности и имеющих различные температурные коэффициенты линейного расширения а. Один металл (инвар) имеет малый коэффициент линейного расширения и называется пассивным. Другой (хромоникелевая сталь) имеет большой коэффициент а и называется активным. При нагревании активный слой стремится удлиниться на большую величину, чем пассивный и, как следствие этого, возникает изгибающий момент.
Рис. 1.1. Конструктивная схема теплового реле типа ТРП: 1 — биметаллическая пластина; 2 — нагревательный элемент; ограничивающие выступы; 4 — пружина; 5 — неподвижный контакт; 6 — прыгающий контакт
Рис. 1.2. Тепловое реле ТРП. 1 — биметаллическая пластинка; 2 — упор самовозврата; 3 — держатель подвижного контакта; 4 — пружина; 5 — подвижный контакт; 6 — неподвижный контакт; 7 — сменный нагреватель; 8 — регулятор тока уставки; 9 — кнопка ручного возврата
Реле серии ТРП на токи 1-600 А в основном используется в магнитных пускателях серии ПА и имеет комбинированную систему нагрева. Исключение — реле ТРП-600 (рис. 1.2).
Биметаллическая пластина 1 нагревается как за счет прохождения через нее тока, так и за счет нагревателя 7. При прогибе конец биметаллической пластины воздействует на прыгающий подвижный контакт 5. Реле допускает плавную ручную регулировку тока срабатывания в пределах ± 25 % номинального тока уставки. Эта регулировка осуществляется ручкой 8, меняющей первоначальную деформацию биметаллической пластины. Возврат реле в исходное положение после срабатывания производится кнопкой 9. Возможно исполнение и с самовозвратом после остывания биметалла. Высокая температура срабатывания (выше 200 °С) уменьшает зависимость работы реле от температуры окружающей среды.
Реле серии РТ являются аппаратами открытого исполнения с косвенной системой нагрева. Регулирование тока срабатывания реле РТ в небольших пределах осуществляется с помощью рычага, перемещение которого изменяет ход конца биметаллической пластины при нагревании до освобождения защелки. Более широкое регулирование тока срабатывания осуществляется заменой нагревательных элементов. Имеется 56 номеров нагревательных элементов на 0,64-40 А.
Реле ТРВ служит для защиты двигателей с легкими условиями пуска, выпускается 20-ти исполнений на токи до 200 А.
Реле серии ТРН выпускаются на токи 0,5-40 А с термокомпенсацией. Используются в основном в магнитных пускателях серии ПМЕ и ПА, имеют косвенный нагрев с помощью пластинчатых ни- хромовых нагревателей.
На рисунке 1.3 приведена конструктивная схема теплового реле ТРН, предназначенного для магнитных пускателей типов ПМЕ и ПМА (табл. 1.2). Биметаллическая пластина 2 при прохождении тока, превышающего заданный, изгибается и перемещает вправо пластмассовый толкатель 11, связанный жестко с биметаллической пластиной 3, выполняющей роль температурного компенсатора. Отклоняясь вправо, пластина 3 нажимает на защелку 8 и выводит ее из зацепления с пластмассовым движком 5 уставок, в результате чего под действием пружины 10 пластмассовая штанга 7 расцепителя отходит кверху (показана пунктиром) и размыкает контакты 9 в цепи управления магнитным пускателем. Движок уставок можно перемещать, поворачивая эксцентрик 4 и изменяя расстояние между концами пластины 3 и защелкой 8, а значит, и ток срабатывания реле.
Температурная компенсация заключается в том, что изгибанию биметаллической пластины 2 при изменении окружающей среды соответствует противоположное по направлению изгибание пластины компенсатора 3. Таким образом достигается независимость тока уставки от окружающей температуры. Ток уставки можно менять в пределах от 0,75 до 1,3 номинального тока нагревательного элемента.
Рис. 1.3. Конструктивная схема теплового реле типа ТРН: 1 — нагревательный элемент; 2 — биметаллическая пластина; 3 — биметаллическая пластина температурного компенсатора; 4 — эксцентрик; 5 — движок уставки; 6 — кнопка «Возврат»; 7 — штанга расцепителя (тяга); 8 — защелка; 9 — контакты; 10 — пружина; 11 — толкатель
Таблица 1.2 Значения номинальных токов сменных нагревательных элементов тепловых реле типа ТРН и ТРП
*Эти модификации устанавливаются только в коробках магнитных пускателей.
Тепловые реле типа РТЛ имеют: три полюса; температурный компенсатор; механизм для ускоренного срабатывания при обрыве фазы; регулятор тока несрабатывания; ручной возврат; один размыкающий и один замыкающий контакты; переднее присоединение проводов; несменные нагревательные элементы.
Тепловые реле РТЭ выпускается в трех типоразмерах, с диапазоном по току уставки теплового расцепителя от 0,4 до 93 А. Наличие двух пар дополнительных контактов, нормально замкнутых и нормально открытых, значительно облегчает проектирование схем управления. Эти контакты могут использоваться как для самодиагностики устройства, так и для командных цепей. Диапазоны регулировок токов реле типа РТЭ приведены в таблице 1.5.
Только правильно отрегулированные тепловые реле могут защитить электродвигатели от перегрузок. Поэтому рассмотрим методы регулировки реле. Уставки регулировки теплового реле можно определить расчетом в такой последовательности:
1. Определяют уставку реле без температурной компенсации:
N1 = (Iн дв – Iнэ)/cIнэ, (1.1)
где Iн дв — номинальный ток нагрузки электродвигателя;
Iнэ — номинальный ток нагревательного элемента теплового реле;
с — коэффициент деления шкалы (с = 0,05).
2. Вычисляют поправку на температуру окружающей среды:
где Т — температура окружающей среды, оС.
3. Поправка необходима в тех случаях, когда температура окружающей среды ниже максимальной (40 оС) более чем на 10 оС. При значительном изменении температуры окружающей среды (зимой и летом) тепловое реле следует отрегулировать вновь. Находят суммарную уставку реле:
которая может быть со знаком «+» или «-». Затем на полученном делении шкалы устанавливают стрелочку регулировочного винта или рычаг.
Таблица 1.5 Внешний вид и диапазоны регулировок токов реле типа РТЭ
Часто электродвигатели и их пускозащитная аппаратура находятся в различных температурных условиях, например, электродвигатель установлен внутри животноводческого помещения, а пускозащитная аппаратура — снаружи. В этих случаях правильно отрегулировать тепловое реле почти невозможно.
Корректировкой уставки, полученной в результате расчета делений шкалы, можно провести приближенную регулировку тепловых реле. Для их точной регулировки применяют специальные приспособления — стенды.
В сельскохозяйственном производстве в основном используются электродвигатели мощностью до 30 кВт. Для их защиты применяют различные тепловые реле, которые регулируют при помощи приспособления, создающего ток нагрузки в пределах 0-50 А.
На рисунке 1.4 показана принципиальная электрическая схема лабораторного стенда для проверки и регулировки тепловых реле. Такой стенд может быть успешно изготовлен в условиях хозяйства. К вторичной обмотке маломощного нагрузочного трансформатора TV2 подключаются нагревательные элементы тепловых реле (КК1 и КК2). Напряжение первичной обмотки плавно регулируется лабораторным автотрансформатором (ЛАТР) TV1. Ток нагрузки теплового реле КК1 фиксируется амперметром рА (рис. 1.4, а).
Ток нагрузки реле КК2 фиксируется амперметром рА, включенным во вторичную цепь через трансформатор тока TI (рис. 1.4, б).
Так как трансформатор TV2 нагружен малым сопротивлением нагревательного элемента теплового реле и во вторичной цепи течет большой ток, вторичная обмотка трансформатора должна быть выполнена из провода большого сечения, рассчитанного на ток нагрузки 50 А. Число витков вторичной обмотки нагрузочного трансформатора выбирают из условия, что необходимо получить достаточное напряжение для регулировки маломощных тепловых реле, например, ТРН-10 А, нагревательные элементы которых имеют относительно большое сопротивление. Из этих условий определяется значение максимального вторичного напряжение порядка 4 В.
Рис. 1.4. Принципиальная электрическая схема для проверки и регулировки тепловых реле
Тепловое реле, например, типа ТРН проверяют следующим образом. Напряжение на схему подают через контакты КМ магнитного пускателя путем нажатия кнопки SB1 «Пуск». К вторичной обмотке нагрузочного трансформатора TV2 подключают сначала один нагревательный элемент КК1, а контакты теплового реле КК1 включают в цепь сигнальной лампы HL3. Ручку автотрансформатора TV1 устанавливают в нулевое положение и подают напряжение. Затем поворотом ручки вправо устанавливают ток I = 1,5 1н дв и секундомером или часами с секундной стрелкой контролируют время срабатывания реле (момент погасания сигнальной лампы HL3). Далее то же самое выполняют при подключенном втором нагревательном элементе теплового реле. Если время срабатывания теплового реле хотя бы одного из нагревательных элементов не соответствует норме, тепловое реле следует отрегулировать.
Для проверки тепловых реле следует использовать их уточненные характеристики, однозначно определяющие время срабатывания Т в зависимости от значения перегрузки k (рис. 1.5).
Тепловое реле типа ТРН регулируют в следующем порядке:
• Реле осматривают и проверяют, нет ли механических дефектов.
• Проверяют, соответствуют ли номинальный ток нагревательных элементов реле номинальному току нагрузки защищаемого электродвигателя. При необходимости нагревательные элементы заменяют.
• Проверяют, не согнуты ли нагревательные элементы.
• Проверяют расстояние между нагревательными элементами и биметаллическими пластинками, их взаимное расположение при температуре 20 оС. Если расстояние от обоих нагревательных элементов до пластинок неодинаковы, необходимо изменить положение нагревательных элементов, отпустив, а затем снова затянув винты их крепления.
• Регулировочный эксцентрик уставок теплового реле переводят в положение «+5».
• Тепловое реле подсоединяют к регулировочному устройству (рис. 1.4) и устанавливают ток нагрузки нагревательного элемента в 1,5 раза больше номинального тока защищаемого электродвигателя.
Через 145 с (70 с для теплового реле ТРН-10 А) эксцентрик плавно поворачивают в направлении к положению «-5» до срабатывания теплового реле.
После интенсивного (12-15 мин) охлаждения теплового реле (например, настольным вентилятором) к регулировочному устройству подключают второй нагревательный элемент и снова устанавливают ток нагрузки 1,5 1н дв.
Если за 145 с (70 с для теплового реле ТРН-10 А), тепловое реле не срабатывает, плавно поворачивают регулировочный винт против хода часовой стрелки до срабатывания. Если тепловое реле сработало раньше, чем через 145 с (70 с для ТРН-10 А), регулировочный винт необходимо повернуть по ходу часовой стрелки на один оборот. Затем тепловое реле охлаждают и регулировку повторяют, чтобы оно сработало от второго нагревательного элемента за 145-150 (70-75) с.
Рис. 1.5. Уточненные средние защитные характеристики для тепловых реле: а — ТРН-Ю(А); б — ТРН-10; ТРН-25, ТРН-40; в — ТРП-25; г — ТРП-60
Если тепловое реле будет срабатывать от обоих нагревательных элементов, то проводят окончательную его регулировку. Для этого оба нагревательных элемента соединяют последовательно и подключают к регулировочному устройству, а регулировочный эксцентрик устанавливают в положение «+5». Снова устанавливают ток нагрузки 1,5 1н дв и через 145 (70) с плавно поворачивают эксцентрик по направлению к положению «-5» до срабатывания теплового реле. После этого тепловое реле будет точно отрегулировано. Если во время регулировки эксцентрик находится в положении «+5», а ток в нагревательном элементе равен 1,5 1н дв и тепловое реле срабатывает раньше чем за 145 (70) с, то необходимо заменить нагревательный элементы, выбирая их по большему номинальному току. Если, наоборот, при этом же токе нагрузки и положении регулировочного эксцентрика «-5» тепловое реле не срабатывает за 145 (70) с, нагревательные элементы также необходимо заменить, только выбрать их следует по меньшему номинальному току. Затем тепловое реле регулируют по рассмотренной методике.
У тщательно отрегулированных тепловых реле типа ТРП и ТРН при комнатной температуре защитные характеристики мало отличаются от уточнённых средних, однако в холодном состоянии они не обеспечивают защиту электродвигателей, заклиненных и не запустившихся при обрыве фазы.
Источники: http://sesaga.ru/teplovaya-zashhita-elektrodvigatelya-elektroteplovoe-rele.html, http://podvi.ru/elektromontazhnye-izdeliya/magnitnyj-puskatel-i-teplovoe-rele.html, http://www.eti.su/articles/nizkovoltnaya-tehnika/nizkovoltnaya-tehnika_1447.html