Домой Блог

Фаза тока это

0

Что такое фаза в электрическом токе

О фазе часто можно услышать в разговоре об электричестве. Но, конечно, слово имеет гораздо более широкое значение. Что такое фаза, ее циклы, как она связана с заземлением. Об этом и многом другом узнаем в следующей статье.

Фаза тока это

Что такое фаза

В физике под фазой понимают одно из состояний вещества (например, вода бывает в жидком, жидкокристаллическом, кристаллическом и газообразном агрегатном состоянии). Кроме того, под ней понимается стадия в цикле колебания (к примеру, в волновом движении).

В астрономии слово имеет несколько иной смысл. Что такое фаза в этой науке, можно понять из наблюдений с Земли за небесным телом (к примеру, Луной). То есть ее можно обозначить как видимую часть освещенной полусферы небесного объекта с Земли.

Фаза тока это

В теории экономики широко известно, что такое фазы цикла. Это когда в определенный промежуток времени (цикл) наблюдается закономерная активность.

Рассмотрим, что подразумевает этот термин в электричестве.

Фаза в электричестве

А вы знаете, откуда берется электричество на электростанциях? Везде принцип его возникновения один и тот же: вращение магнита внутри катушки приводит к тому, что в ней появляется переменный ток. Этот эффект получил название ЭДС, или электродвижущая сила индукции. Вращающийся магнит называют ротором, а прикрепленные вокруг него катушки — статором.

Переменное напряжение получают от постоянного, когда последнее изгибают по синусу, в результате чего достигается то положительное, то отрицательное его значение.

Итак, магнит приходит в движение, например, благодаря потоку воды. При вращении ротора магнитный поток все время меняется. Поэтому и создается переменное напряжение. При трех установленных катушках каждая из них имеет отдельную электрическую цепь, а внутри нее появляется одинаковое переменное значение, где фаза напряжения сдвинута по окружности на сто двадцать градусов, то есть на треть относительно той, что расположена рядом.

А может, запитывать дома как раньше?

Такая схема получила название трехфазной. Но можно спокойно запитать дом и с помощью одной такой катушки. При этом первый конец катушки просто заземляют, а второй — ведут в дом, где этот провод подсоединяют, к примеру, к вилке чайника. Второй штырек вилки при этом заземляют. Получится то же самое электричество.

Распространение трехфазного тока

Трехфазный ток поступает в дома через линии электропередач (где напряжение достигает тридцати пяти киловольт). Считается, что он является наиболее экономичным и со всех сторон более выгодным по сравнению с обычным током.

В промышленности питание идет именно трехфазным током, так как вращающуюся конструкцию на нем соорудить легче, и вообще он более мобилен и имеет большую мощность.

Разберемся, что такое фаза, земля и нулевой провод, более подробно.

Фаза тока это

Легко представить себе трехфазный генератор с соединением по схеме «звезда». Точку фазного соединения называют нейтралью.

Обычно ее заземляют для увеличения безопасности, так как если прибор выйдет из строя, то при отсутствии заземления, создастся опасность для человека. При прикосновении к прибору его просто ударит током. Но при наличии заземления произойдет утечка лишнего тока и никакого риска не образуется.

Итак, все вместе — нулевой провод, земля и фаза провода необходимы для обеспечения безопасности людей. В новых строящихся домах предусмотрена именно такая система, в то время как в старых она отсутствует.

Определение фазы

Иногда бывает необходимо определить, где находится провод фазы. Для обычной розетки, это, может быть, и не нужно. А вот при подключении, например, люстры, фаза должна подаваться непосредственно на выключатель, а ноль — прямо к лампам. Тогда, если свет будет выключен, при замене лампы человека не ударит током. И даже при включенном приборе, если он случайно коснется лампы, хоть и будет горячо, зато удара не случится.

Есть очень простой и удобный прибор для определения фаз. По виду он напоминает обычную отвертку. Но внутри устройство имеет лампочку, которая при прикосновении к фазе загорится. При этом палец должен касаться в это время металлического пятачка прибора.

Некоторые смельчаки фазу решаются определять совершенно небезопасными методами. К таковым относится так называемая «контролька», когда провод подставляют под струю воды, касаются их неоновой лампочкой или приводят в контакт с батареей.

Стоит ли говорить, что лучше не прибегать к способам, которые становятся опасными не только для экспериментатора, но и для окружающих. Тем более индикаторная отвертка в настоящее время стоит совсем недорого.

Фаза тока это

При правильном монтаже электрокабелей по помещениям провод синего цвета будет означать ноль, желто-зеленый — землю, а черным или любым другим цветом будет обозначена фаза. Но работа электриков, к сожалению, не всегда бывает добросовестной и квалифицированной. Поэтому цвета могут не совпадать с назначением.

Фаза тока это

Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.

Фаза тока это

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Фаза тока это

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Фаза тока это

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

Фаза тока это

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.

Фаза тока это

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Что такое фаза и ноль

Фаза тока это

Чтобы выяснить, что такое фаза и ноль, обычному человеку совсем не нужно углубляться в электронные дебри. Вокруг нас множество живых примеров, на которых можно доходчиво выяснить для себя суть этих понятий. Рассмотрим с этой точки зрения обыкновенную штепсельную розетку .

В каждой розетке частного дома или квартиры имеется переменный ток. Также к розетке подведены два электрических провода ноль и фаза. Подача переменного тока производится по одному из них, который и носит название фазы.

Как определить фазу и ноль

Определить, какой из двух проводов является фазой, можно при помощи индикаторной отвертки. В случае прикосновения лампочка, установленная в ручке отвертки, будет светиться. Материалом для рукоятки служит Фаза тока это полупрозрачный пластик. Рабочая частота фазного провода в большинстве случаев составляет 50 герц, то есть положительные и отрицательные значения меняются местами 50 раз в течение одной секунды.

Провод, называемый «ноль», не находится под напряжением и используется в качестве заземления. В случае короткого замыкания, ноль отводит электрический ток. Провод фазы нельзя трогать ни в коем случае, тогда как к нулю можно прикасаться совершенно свободно.

Подключенные проводки имеют разную окраску. Ноль, как правило, имеет голубую или синюю расцветку. Фаза имеет собственную окраску, поскольку находится под напряжением и представляет серьезную опасность. Смертельный случай может наступить и при напряжении чуть более 50-ти вольт, а в розетках – вообще 220 вольт переменного электрического тока.

Современные евророзетки

Подключение к розетке двух проводов применялось раньше – примерно 10-15 лет назад. Сейчас используются розетки, изготавливаемые по европейским стандартам. При вскрытии такой розетки внутри можно увидеть уже не два, а три провода. Первый из них, фазный, находящийся под напряжением, имеет любую окраску, кроме синей. Синяя или голубая окраска используется для Фаза тока это нулевого рабочего проводника. Третий провод, окрашенный в желто-зеленый цвет, называется защитным нулевым.

В евророзетках проводник фазы располагается справа, а если в выключателях, то сверху. Защитный нулевой проводник в розетках расположен слева, а в выключателях – снизу. Роль первых двух проводов уже выяснилась, осталось ответить на вопрос: для чего нужен третий, защитный провод. Когда оборудование, подключаемое в розетку, находится полностью в исправном состоянии, то ноль находится в бездействии. Его защита производится при коротком замыкании, когда ток попадает на участки, обычно не попадающие под напряжение. Защитный провод заберет этот ток на себя и перенаправит его в землю или к источнику. То есть, можно будет ощутить лишь легкий удар током.

В общих чертах мы выяснили, что такое фаза и ноль. Эти значения являются основными для всех электрических сетей.

фаза тока это:

Смотреть что такое «фаза тока» в других словарях:

фаза тока — Аргумент синусоидального электрического тока, отсчитываемый от точки перехода значения тока через нуль к положительному значению. Примечание — Аналогично определяют фазы синусоидальных электрического напряжения, электродвижущей силы,… … Справочник технического переводчика

фаза синусоидального электрического тока — фаза синусоидального электрического тока; фаза тока Угловое значение аргумента синусоидального тока, отсчитываемое от ближайшей предшествующей точки перехода этого тока через нуль к положительному значению … Политехнический терминологический толковый словарь

фаза — Проводник, пучок проводников, ввод, обмотка или иной элемент многофазной системы переменного тока, являющийся токоведущим при нормальном режиме работы. [ГОСТ 24291 90] фаза электрической сети фаза Название провода, пучка проводов, вывода, обмотки … Справочник технического переводчика

ФАЗА — положение; отдельный момент к. н. движения, когда явление представляется нам видоизмененным сравнительно с предыдущим и последующим моментами; нпр. фазы луны. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М.,… … Словарь иностранных слов русского языка

Фаза — Фаза. Колебания маятников в одинаковой фазе (а) и противофазе (б); f угол отклонения маятника от положения равновесия. ФАЗА (от греческого phasis появление), 1) определенный момент в ходе развития какого либо процесса (общественного,… … Иллюстрированный энциклопедический словарь

ФАЗА — (от греческого phasis появление), 1) определенный момент в ходе развития какого либо процесса (общественного, геологического, физического и т.д.). В физике и технике особенно важна фаза колебаний состояние колебательного процесса в определенный… … Современная энциклопедия

ФАЗА — (от греч. phasis появление). 1) определенный момент в ходе развития какого либо процесса (общественного, геологического, физического и т. д.). В физике и технике особенно важна фаза колебаний состояние колебательного процесса в определенный… … Большой Энциклопедический словарь

фаза линии переменного тока — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN phase of ac line … Справочник технического переводчика

фаза — 15 фаза Проводник, пучок проводников, ввод, обмотка или иной элемент многофазной системы переменного тока, являющийся токоведущим при нормальном режиме работы 601 03 09 de Aussenleiter en phase fr phase Источник: ГОСТ 24291 90: Электрическая… … Словарь-справочник терминов нормативно-технической документации

фаза — ы; ж. [от греч. phasis появление] 1. Отдельная стадия, период, этап развития какого л. явления, процесса и т.п. Основные фазы развития общества. Фазы процесса взаимодействия животного и растительного мира. Вступить в свою новую, решающую,… … Энциклопедический словарь

  • Medela Молокоотсос электронный двухфазный Swing Maxi с возможностью двойного сцеживания. Электрический молокоотсос Medela Swing Maxi с соской Calma для сцеживания из одной или двух молочных желез. Бесшумный, легкий и автономный электронный молокоотсос для сцеживания из одной или… Подробнее Купить за 10500 руб
  • Defender DFS 501 сетевой фильтр на 6 розеток. Сетевой фильтр DFS 501 защищает электронную технику от перегрузок по току, короткого замыкания, ВЧ и импульсных помех. Предназначен для подключения аудио- и видеотехники, компьютера и… Подробнее Купить за 897 руб
  • Розетка настенная 400 В 3P+N+E 32A IP44 ИЭК. Предназначена для подключения любого промышленного оборудования: электроинструмента, тепловентиляторов, строительных пылесосов, погружных насосов, для электроснабжения бытовок и киосков, для… Подробнее Купить за 288 руб

Другие книги по запросу «фаза тока» >>

Источники: http://fb.ru/article/241952/chto-takoe-faza-v-elektricheskom-toke, http://electric-220.ru/news/chto_takoe_faza_i_nol/2012-12-21-251, http://technical_terminology.academic.ru/6149/фаза_тока

Схема подключения трехфазного двигателя

0

Схема подключения трехфазного электродвигателя к трехфазной сети

Всем электрикам известно, что трехфазные электродвигатели работают эффективнее, чем однофазные на 220 вольт. Поэтому если в вашем гараже проведена подводка питающего кабеля на три фазы, то оптимальный вариант – установить любой станок с мотором на 380 вольт. Это не только эффективно в плане экономичности работы, но и в плане стабильности. При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?

Схема подключения трехфазного двигателя

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет. Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.

Схема подключения трехфазного двигателя

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит. Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда. Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт. При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.Схема подключения трехфазного двигателя

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Схема подключения трехфазного двигателя

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Схема подключения трехфазного двигателя

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению. Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.

Как правильно провести подключение электродвигателя звездой и треугольником

  • Схема подключения трехфазного двигателя

    Подключение звезда и треугольник – в чем разница?

  • Схема подключения трехфазного двигателя

    Схема подключения электродвигателя на 220В через конденсатор

    Подключение трехфазного двигателя к трехфазной сети

    Схема подключения трехфазного двигателя

    1. Основные схемы подключения
    2. Использование схемы «звезда-треугольник»
    3. Трехфазный двигатель с магнитным пускателем
    4. Видео

    Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

    Схемы подключения

    Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

    Схема подключения трехфазного двигателя

    Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

    Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

    Схема подключения трехфазного двигателя

    В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

    Использование схемы «звезда-треугольник»

    Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

    Схема подключения трехфазного двигателя

    Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей. устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

    Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

    Трехфазный двигатель с магнитным пускателем

    Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

    Схема подключения трехфазного двигателя

    Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

    Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

    Схема подключения трехфазного двигателя

    Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

    Схемы подключения трехфазного двигателя

    Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода.

    1. Схема звезды.
    2. Схема треугольника.

    Схема подключения трехфазного двигателя

    Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

    Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

    Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

    Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

    Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

    Проверка схемы подключения мотора

    Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

    Метод определения фаз статора

    После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.

    Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

    Полярность обмоток

    Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:

    • Подключить импульсный постоянный ток.
    • Подключить переменный источник тока.

    Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

    Как проверить полярность обмоток батарейкой и тестером

    Схема подключения трехфазного двигателя

    На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

    Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

    Проверка переменным током

    Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

    Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

    Схема звезды

    Этот тип схемы подключения двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

    Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

    Схема подключения трехфазного двигателя

    Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

    Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

    Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

    Схема подключения трехфазного двигателя

    В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

    Схема треугольника

    Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

    Схема подключения трехфазного двигателя

    Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

    Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

    Двигатель с магнитным пускателем

    Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

    Схема подключения трехфазного двигателя

    Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

    В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

    Подключение мотора от автомата

    Общий вариант такой схемы подключения выглядит как на рисунке:

    Схема подключения трехфазного двигателя

    Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

    Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

    Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

    При применении такой схемы нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

    Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание. Если электродвигатель в одном числе, и работает полную смену, то есть следующие недостатки:

    1. Нельзя отрегулировать тепловой ток сработки автоматического выключателя. Чтобы защитить электромотор, ток защитного отключения автомата устанавливают на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток тепловой защиты. Но у простого автоматического выключателя нет возможности настроить ток.
    2. Нельзя дистанционно выключить и включить электродвигатель.
    Похожие темы:

    Источники: http://onlineelektrik.ru/eoborudovanie/edvigateli/sxema-podklyucheniya-trexfaznogo-elektrodvigatelya-k-trexfaznoj-seti.html, http://electric-220.ru/news/podkljuchenie_trekhfaznogo_dvigatelja_k_trekhfaznoj_seti/2016-09-28-1073, http://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/skhemy-podkliucheniia-trekhfaznogo-dvigatelia/

  • Как пользоваться wago

    0

    «Ваго» (зажим проводов): инструкция, как пользоваться

    October 21, 2016

    При проведении электромонтажных работ львиную долю времени занимает выполнение соединений проводов в распределительных коробках. Помимо трудоёмкости создания распределительные коробки являются слабым местом любой электропроводки, большая часть неисправностей вызвана именно плохим контактом либо коротким замыканием в них.

    Традиционные способы соединения проводов

    Исторически соединения выполнялись скруткой или с использованием винтовых клемм. Скрутка проводов – наиболее простой и распространённый способ монтажа, но и он имеет недостатки:

    • Нельзя скручивать вместе медные и алюминиевые провода.
    • Не следует скручивать многожильные провода.
    • Размер скрутки должен быть не менее пяти витков.
    • Нельзя скручивать провода разных сечений.
    • Чтобы скрутка не ослабела с годами, она либо проваривается, либо применяются специальные подпружиненные колпачки, для медных проводов используют также пайку, но это достаточно трудоемко.
    • Необходимо дополнительно изолировать место скрутки.
    • Не рекомендуется соединять более трёх проводов.

    Использование винтовых клемм также имеет ограничения вследствие больших габаритов, малого количества соединяемых проводов, ослабевания винтового соединения со временем и конечно трудоёмкости.

    Достоинства и недостатки зажимов «Ваго»

    Альтернативным способом монтажа является применение быстрозажимных клеммников. Клеммные зажимы «Ваго» имеют целый ряд неоспоримых преимуществ при выполнении электромонтажных работ:

    • Возможность соединения алюминиевых и медных проводов.
    • Соединение проводов разных диаметров от 0,5 до 4,0 кв. мм.
    • Использование многожильных проводов.
    • Номинальный ток до 32А.
    • Соединение до восьми проводов в одной группе.
    • Быстрый и удобный монтаж без применения специальных инструментов.
    • Изолированное электробезопасное соединение.
    • Компактный размер клеммника.
    • Возможность визуального контроля соединения через прозрачный корпус.
    • Отдельные модели позволяют выполнять разборное соединение.
    • Наличие специальных отверстий в корпусе для подключения контрольно-измерительных приборов.

    Единственным недостатком этих соединителей является их цена, но он с лихвой окупается экономией времени при монтаже, надёжностью и долговечностью соединения. Также высокой плотности монтажа можно достичь, применяя зажим «Ваго» (фото демонстрирует аккуратность монтажа клеммников в распределительной коробке).

    Как пользоваться wago

    Типы зажимов «Ваго»

    Компания выпускает клеммы с зажимными устройствами следующих типов:

    • Пружинные зажимы.
    • Зажимы FIT-CLAMP.
    • Зажимы CAGE CLAMP.

    Клеммы с плоскими пружинными зажимами являются наиболее простым и бюджетным решением для соединения проводов. Зажим представляет собой блок из плоских стальных пружин, запрессованных в поликарбонатный корпус. Выпускаются блоки с числом контактов от двух до восьми. Зажим предназначен для одноразового соединения проводов, повторное применение нежелательно, так как усилие пружины ослабевает.

    В зажимах FIT-CLAMP используется врезной контакт (IDC), что обеспечивает наиболее быстрый вариант монтажа. Эти устройства позволяют соединять провода без предварительного снятия изоляции.

    В клеммах с зажимами CAGE CLAMP стальная пружина выполнена отдельно от токопроводящей медной шины. Для изготовления токопроводящей платины используется луженая медь. Такая конструкция зажима позволяет использовать любые провода, в том числе тонко- и многожильные.

    Как пользоваться wago

    Линейка продукции

    Номенклатура клеммных соединителей «Ваго» (зажимы, характеристики которых мы рассматриваем) такова:

    • 294 и 294 Linec – специализированные клеммы для присоединения источников питания и осветительных приборов, предназначены для ответвления трёх проводников: фазы, нуля и защитного заземления.
    • 224 – серия для подключения тонкожильных проводников осветительных приборов к распределительной сети.
    • 243 PUSH WIRE – для присоединения одножильных проводов малых сечений.
    • 2273 COMPACT PUSH WIRE – используются для соединения любых проводов в распределительных коробках.
    • 273 и 773 PUSH WIRE – соединение одножильных проводов в монтажных коробках.
    • 222 – универсальные клеммы для многократного соединения любых проводов с сечением от 0,08 мм кв.
    • 221 WAGO COMPACT – универсальный клеммник уменьшенного габарита для многократного соединения любых проводов с сечением от 0,2 мм кв.

    Рассмотрим более подробно зажимы ваго. Как пользоваться клеммами каждой серии?

    Соединители серий 294 и 294 Linect

    Используемые в клеммниках этих серий зажимы Push-in CAGE CLAMP позволяют подключать одно-, много- и тонкожильные провода без применения специального инструмента. Опционально прямой контакт защитного заземления PE может быть расположен под соединителем и использоваться для объединения с PE шиной при монтаже. На стороне внутреннего соединения имеется полнофункциональный третий контакт для каждого полюса сечением от 0,5 до 0,75 кв. мм. Соответствующий PE-полюс может оснащаться внешним контактом PE (защитное заземление). Для присоединения подключаемого прибора в каждой группе предусмотрен третий зажим с сечением 0,5-0,75 мм кв. Эти зажимы проводов «Ваго» монтируются следующим образом:

    • Распределительная цепь, к которой необходимо параллельно подключить светильник или иную нагрузку, разрезается.
    • С обрезанных концов проводов удаляется изоляция на длину 1 см.
    • Нажать на подвижную часть клеммы и ввести зачищенные провода в открывшееся отверстие соответствующего полюса до упора.
    • Отпустить подвижную часть клеммы ваго, зажим зафиксирует провод.
    • Подключить провода осветительного прибора к самозажимным контактам каждого полюса.

    Для удобства монтажа каждый полюс клеммы промаркирован латинскими буквами L, N, PE.

    Как пользоваться wago

    Изделия 224 серии

    Этот зажим «Ваго» — для многожильных проводов осветительных приборов или иной слаботочной нагрузки. Тонкий проводник осветительного прибора может быть подключён к концу либо в разрыв распределительной сети. Каждая клемма рассчитана на подключение к одному полюсу электрической сети. Сечение проводов распределительной сети — 1-2,5 мм кв. а подключаемого прибора — 0,5-2,5 мм кв. каждого полюса сечением от 0,5 до 0,75 мм². Монтаж клеммы производится в такой последовательности:

    • При подключении в разрыв распределительной линии питающий провод разрезается.
    • С обрезанных концов проводов удаляется изоляция на длину 1 см.
    • Провода распределительной сети вставляются в круглые отверстия самозажимных контактов.
    • Нажать на подвижную часть клеммы и ввести зачищенный провод от осветительного прибора в отверстие квадратной формы до упора.
    • Отпустить подвижную часть клеммы, зажим зафиксирует провод.

    Клеммы 243 серии

    243 серия «Ваго» (зажим PUSH WIRE) применяется для присоединения слаботочных устройств одножильными проводами малых сечений от 0,5 до 0,8 мм кв. Имеют ультракомпактный размер. Выпускаются модели для подключения от трёх до восьми проводов. Номинальное напряжение устройства — до 100В, максимальный ток — до 6А.

    Зажимы 273 и 773 серии

    Эти серии изделий «Ваго» (зажим PUSH WIRE) предназначены для монтажа одножильных проводов в распределительных коробках и различаются максимальным сечением проводов: до 2,5 мм кв. для 273 серии и до 4 мм кв. для 773-й. Максимально допустимый ток изделий — до 32А.

    Как пользоваться wago

    Зажимы 2273 серии

    Клеммы серии 2273 с контактами COMPACT PUSH WIRE отличаются компактным размером, что существенно уплотняет монтаж. Токовая нагрузка этих зажимов — до 24А. Номинальный ряд включает изделия для подключения до восьми проводов. Допускается применение многожильных, алюминиевых либо медных проводов сечением от 0,5 до 2,5 мм кв.

    Как пользоваться wago

    Плоскозажимные клеммы 243, 273, 773 и 2273 серий монтируются вручную без применения специальных инструментов в такой последовательности:

    • Концы проводов зачищаются на длину 10 мм.
    • Зачищенные концы проводов до упора вставляются в отверстия клеммы.
    • Правильность монтажа контролируется через прозрачную крышку корпуса клеммы.

    Продукция 222 и 221 серий

    Зажимы этих серий различаются размером и типом корпуса. Устройства позволяют выполнять многократный монтаж любых проводов сечением от 0,08 мм для 222 серии и от 0,2 до 4,0 мм кв. (для 221 серии). Выпускаются варианты для подключения двух, трёх и пяти проводов. Максимальный ток зажима — 32А. Серия 221 выпускается в компактном корпусе с прозрачной крышкой.

    Как пользоваться wago

    Монтаж зажимов выполняется вручную:

    • Концы проводов зачищаются на длину 10 мм.
    • Поднимаются рычажки оранжевого цвета на клеммнике «Ваго», зажим открывает отверстие пружинного контакта.
    • Зачищенные концы проводов до упора вставляются в отверстия клеммы.
    • Рычажки опускаются в исходное положение, отпуская пружину контакта и зажимая провод.
    • Для изделий 221 серии можно проконтролировать качество монтажа через прозрачный корпус.

    Общие указания по монтажу

    Клеммные зажимы «Ваго» широко применяются по всему миру и доказали свою эффективность. Однако необходимо соблюдать некоторые простые рекомендации при их монтаже:

    • Суммарная нагрузка всех линий, подключаемых к одной клемме, не должна превышать её номинальный ток. Желательно всегда выбирать клемму с запасом по току.
    • Учитывайте паспортные данные изделия — максимальное напряжение, диапазон сечений жил проводов и их тип.
    • Монтаж клемм должен выполняться только в распределительных (монтажных коробках).
    • Распределительные коробки должны располагаться в доступном для ревизии месте.
    • Всегда оставляйте запас проводов, достаточный для повторного монтажа.
    • При зачистке концов проводов используете специальные метки, нанесённые на корпусе клемм. Ровно зачищенные провода позволят правильно выполнить их установку в зажимах.
    • При монтаже алюминиевых проводов используйте специальную пасту, исключающую окисление алюминия.
    • Для контроля напряжения на смонтированных клеммах подключайте измерительный прибор к специально предназначенным отверстиям в корпусах зажимов.

    Как пользоваться wago

    Более 35 лет электромонтажники во всем мире применяют зажимы «Ваго». Отзывы довольных пользователей о применении этих изделий говорят сами за себя.

    Как пользоваться wago

    10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

    Как пользоваться wago

    Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.

    Как пользоваться wago

    Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.

    Как пользоваться wago

    13 признаков, что у вас самый лучший муж Мужья – это воистину великие люди. Как жаль, что хорошие супруги не растут на деревьях. Если ваша вторая половинка делает эти 13 вещей, то вы можете с.

    Как пользоваться wago

    Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

    Как пользоваться wago

    Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

    Обзор моделей клеммников WAGO

    В Европе клеммники WAGO считаются, пожалуй, самым распространенным методом соединения электрических кабелей. Что же касается нашей страны, то люди у нас пока что с недоверием относятся к ним, хотя люди, профессионально занимающиеся обустройством бытовой электрической проводки, прекрасно знают об этих приспособлениях. Более того, термин «Ваго» уже прочно вкоренился в словаре сегодняшнего электрика.

    Как пользоваться wago

    Сегодня мы разберемся с конструктивными особенностями клеммников WAGO, рассмотрим всевозможные модели и вариации приборов. Начнем с того, что такие клеммники могут применяться как для монтажа в соединительных коробках, так и при подсоединении осветительного оборудования.

    Отличительной особенностью приборов является то, что в них используется особый плоско-пружинный зажим «Кейдж Кламп».

    Как пользоваться wago

    Разновидности клеммников

    Все клеммники WAGO разделены производителем на несколько серий, которые предназначаются для того или иного типа проводника, а также могут быть как с пастой, заполняющей весь объем внутри приспособления, так и без пасты. Новичку разобраться во всем этом довольно сложно, ведь здесь есть свои нюансы. Так, клеммники с пастой не подойдут для медных кабелей. По этой причине, чтобы избежать возможных неприятностей в будущем, необходимо ознакомиться со всеми разновидностями продукции данного производителя.

    Изделия 773-й серии

    Это клеммники без пасты, предназначающиеся для соединения медных кабелей на одну жилу (сечение должно составлять от 0,1 до 0,25 сантиметра) в подрозетниках, специальных распаячных коробах и так далее. Стоит добавить, что с их помощью вполне можно подключать и многожильные кабеля, выполненные из меди, но исключительно при условии, что будет использоваться специальный наконечник.

    Как пользоваться wago

    Также в эту серию входят изделия с пастой – они применяются для того, чтобы соединять кабели с проводниками, выполненными из алюминия. Такие клеммники достаточно легко узнаются по специфическому цвету корпуса – он в данном случае серый. Для сравнения: у клеммников, не имеющих пасты, корпус прозрачен и оснащен цветной вставкой.

    Для более детального ознакомления с представителями 773-й серии советуем ознакомиться с приведенной ниже таблицей.

    Как пользоваться wago

    Обратите внимание! Средняя стоимость таких изделий колеблется между 14,20 и 52,80 руб.

    Изделия 222-й серии

    Еще одна, не менее популярная серия клеммников «Ваго», которая к тому же является еще и универсальной. Их, к слову, можно приобрести в любом строительном супермаркете или специализированном магазине. Стоимость вполне приемлема.

    Данные клеммники хороши тем, что могут использоваться не только для кабелей, чье сечение может составлять от 0,008 до 0,4 сантиметра, но и для того, чтобы соединять многожильные провода с одножильными. Максимально допустимое напряжение равно 380 вольтам, сила тока не должна превышать 32 ампер. Изделия производятся в одной разновидности – без использования пасты. Их можно применять не только для подключения осветительного оборудования, но также в распаячных коробах. Не является исключением и применение в точечных светильниках.

    Как пользоваться wago

    Для более детального ознакомления с изделиями данной серии советуем ознакомиться с приведенной ниже таблицей.

    Число подкл. проводн.

    Обратите внимание! Примерная стоимость данных изделий колеблется между 23,10 и 32,30 руб. за штуку.

    Как быть, если необходимо соединить медный проводник с алюминиевым?

    Если речь идет об одножильных проводниках, а клеммники для соединения используются из 773-й серии, то возможны сразу два варианта решения проблемы.

    Вариант первый. Необходимо приобрести клеммник без пасты. После этого в гнездо, предназначенное для алюминиевого кабеля, нужно внести специальную токопроводящую пасту (ее следует приобретать отдельно).

    Вариант второй. Также можно приобрести и клеммник с пастой, но затем тщательным образом вычистить ее из гнезда, предназначающегося для медного кабеля.

    Как видим, все предельно просто, никаких особых трудностей возникнуть не должно. Другое дело, если используется изделие из 222-й серии – здесь возможен всего один вариант: алюминиевый кабель необходимо подсоединять исключительно так, чтобы гнездо при этом заполнялось при помощи токопроводящей пасты. А теперь продолжим рассматривать, какими еще бывают клеммники WAGO.

    Изделия 243-й, 224-й и 862-й серии

    Что касается 224-й серии, то она редко встречается, но применяется также при соединении алюминиевых кабелей с медными как на одну, так и на несколько жил. Для более детального ознакомления советуем изучить приведенную ниже таблицу.

    Как пользоваться wago

    Идем дальше. 243-я серия предназначается для проводников, чье сечение колеблется в пределах от 0,06 до 0,08 сантиметра. Используется, как правило, в цепях со слабым током, в системах видеонаблюдения, охранных системах и так далее. Что характерно, такие клеммники имеют на корпусе специальные пазы, позволяющие собирать блоки из нескольких изделий.

    Как пользоваться wago

    Наконец, 862-я серия. Встречается еще реже, производитель описывает такие изделия как четырехпроводные клеммы, которые предназначены для соединения медных кабелей как с одной, так и с несколькими жилами.

    Как пользоваться wago

    Обратите внимание! Примерная стоимость варьируется между 12 и 38,50 руб. за штуку .

    Учимся пользоваться клеммниками WAGO

    Как уже отмечалось выше, данные клеммники применяются в распределительных коробах и щитах, а также при подсоединении осветительной или любой другой аппаратуры. Изделия позволяют соединять между собой как одно-, так и многожильные кабели. Клеммники различных серий предназначаются для конкретных эксплуатационных условий и места монтажа.

    Обратите внимание! Существует два варианта исполнения этих клемм:

    • одноразовые модели (в них невозможно обратное извлечение кабеля);
    • многоразовые (кабели в данном случае фиксируются посредством специального зажима).

    Рассмотрим, как производится фиксация в каждом из случаев.

    Одноразовые модели

    Представители 773-й серии предназначаются всего для однократного соединения, причем с ними могут использоваться исключительно одножильные кабели. Стоит отметить, что возможно соединение и многожильных кабелей, но наконечники при этом необходимо должным образом опрессовать.

    Как пользоваться wago

    Данные клеммники, как мы уже выяснили ранее, могут выпускаться как заполненными особой токопроводящей пастой, так и не заполненными ею. Сама паста, к слову, необходимо для того, чтобы предотвратить окисление кабелей из алюминия, а клеммы, содержащие ее, довольно легко узнать по цвету корпуса – он обычно темно-серый либо полностью черный.

    Как пользоваться wago

    Сама процедура соединения выглядит следующим образом: провод зачищается и помещается внутрь клеммника до упора. Для фиксации в данном случае используется специальный зажим, который не позволяет кабелю выйти обратно.

    Обратите внимание! В крайнем случае, провод все же можно извлечь – для этого необходимо прокручивать его, прилагая соответствующие усилия. Но специалисты не советуют делать это, поскольку фиксирующий контакт деформируется, а гарантии надежности дальнейшего соединения уже не будет.

    Многоразовые модели

    Клеммники WAGO, представляющие 222-ю серию, могут использоваться многократно. Кабель в них фиксируется при помощи специального рычажка, имеющего оранжевый цвет. Благодаря этому рычажку контакт с легкостью разъединяется, если схему нужно переналадить или же, как вариант, протестировать цепь.

    Как пользоваться wago

    Для каждого из проводников предусмотрено отдельное гнездо. Принцип действия клеммника основывается на особом пружинном зажиме, который дает возможность соединять провода, чье сечение не превышает 0,4 сантиметра.

    Для монтажа с применением подобного рода клеммы изоляцию кабелей необходимо очистить приблизительно на 10 миллиметров, поднять зажим и, когда кабель будет вставлен, опустить его обратно. Все, работа завершена! Описываемые изделия компактны, поэтому могут располагаться в любом удобном месте (в том числе под розетками). Более того, опрессовка в данном случае не требуется.

    Как пользоваться wago

    Как пользоваться wago

    Сколько электричества потребляет теплый пол

    Ранее мы рассказывали о средних показателях энергопотребления теплого пола и способах расчета, в дополнение к этой статье советуем вам ознакомится с данной информацией читайте об этом тут

    Для чего вообще нужны такие клеммники?

    Сложно вообразить электромонтажные мероприятия, при которых не нужно соединять провода. Ранее это делали при помощи скрутки или, если повезет, полученный таким образом контакт еще дополнялся пайкой. Данная методика, которая, к слову, популярна и сегодня, требует не только соответствующих навыков, но и немалых временных затрат. Более того, само соединение получится слишком большим и неаккуратным. Если использовать винтовые зажимы, то подобного рода проблемы возникать не будут.

    Стоит отметить, что минусы у такого соединения все же имеет место быть.

    1. При «недотянутом» винте контакт получится менее надежным. В таких случаях стык может прогреваться, более того, он может привести даже к воспламенению.
    2. Винт также можно «перетянуть», из-за чего провода (да и сама клемма) могут быть повреждены.

    А у клеммников WAGO таких проблем нет и быть не может, поэтому им отдают предпочтение многие специалисты.

    Обратите внимание! Многие ошибочно полагают, что при использовании таких соединителей нужный контакт не создается, в особенности, если монтируется проводка с большим сечением кабелей. В действительности это не так, а описываемый прогрессивный метод, основывающийся на зажимах пружинного типа, соответствует всем нормам качества и долговечности при проведении электромонтажных работ.

    Итак, для чего вообще нужны эти клеммники? Как уже отмечалось выше, при электромонтаже всего появляется необходимость в соединении нескольких кабелей. И клеммники отличаются от спаек либо же скруток тем, что являются, в принципе, неразъемными соединениями, позволяющими рекордно быстро, если потребуется, разъединять провода, вносить коррективы в схему, оборудовать дополнительное оборудование или же цепь. Безусловно, в крайних случаях требуется и применение спайки, но это случается редко.

    Еще для работы с клеммниками не требуется никакое специальное оборудование. Понадобится только инструмент, с помощью которого можно было бы зачистить изоляционный слой. Затем кабели попросту вставляются в клеммник и крепятся там. Другой особенностью WAGO считается то, что они способны максимально надежно соединять между собой даже провода, имеющие различное сечение, или же изделия, выполненные из различных материалов. И действительно, сейчас методом скрутки нельзя соединить алюминиевый кабель с медным. Наконец, клеммники WAGO еще и экономят пространство внутри щитка либо же распределительного короба, да и место соединение выглядит более аккуратно.

    Преимущества клеммников «Ваго»

    По сути, описываемая клемма представляет собой зажим плоскопружинного типа, но после доработки специалистами компании «Ваго» получила приведенные ниже преимущества.

    1. Для каждого из кабелей предусматривается отдельный зажим.
    2. Размеры клеммников весьма компактны.
    3. Благодаря высокому качеству подключения вероятность неаккуратного монтажа из-за «человеческого фактора» полностью исключается.
    4. Токонесущие элементы безупречно защищены от случайных прикосновений.
    5. При эксплуатации проводники не повреждаются и не деформируются.

    Но главное достоинство все же – это повышенная безопасность и надежность. Ведь если, к примеру, обустраивается скрытая проводка в потолке, то хочется быть уверенным, что она не замкнет, не сгорит внутри клеммника или не станет причиной других неприятностей. Но, невзирая на такую надежность, во всех описываемых клеммниках предусматривается возможность контроля и доступа.

    Из каких материалов изготавливают клеммники WAGO?

    В большинстве случаев фирма применяет в качестве изоляционного материала полиамид (сокращенно – ПА). К примеру, полиамид 6.6 является нейтральным к коррозийным процессам материалом, он трудновоспламеняем, более того, обладает самопогасающими характеристиками. Если говорить о кратковременной термальной нагрузке, то верхний предел в данном случае равен 170 градусам (если речь о первом типе) или 200 градусам (если о втором). При этом нижний предел, при котором функциональность остается на прежнем уровне, составляет -35 градусов, что не может не впечатлить.

    Обратите внимание! Что касается токонесущих элементов, то они в большинстве случаев выполняются из электролитной меди. Покрытие же является свинцово-оловянным (2/5 олова и 3/5 свинца, соответственно). Это, к слову, стандартное покрытие для всей токонесущей продукции компании «Ваго», что является гарантией долговременной защиты от коррозии.

    Если сильное удельное давление воздействует на точку соединения в зажиме «Кейдж Кламп», то выпуклая часть кабеля помещается в мягкий слой, выполненный из свинца и олова, в той или иной зоне контакта. Этим и объясняется то, что точка соединения предельно надежно защищена от коррозийных процессов.

    А вот пружины в клеммниках описываемой фирмы из высококачественной аустенитной хромоникелевой стали, которая тщательно проверяется и отличается внушительным показателем прочности на предмет растяжения. За десятилетия применение данных материалов не было зарегистрировано ни одного случая появления ржавчины между сталью пружины и прочими конструктивными материалами, которые применяются в клеммниках «Ваго» (это относится даже к подключаемым медным кабелям).

    В итоге отметим, что стоимость многоразовых изделий примерно вдвое превышает цену одноразовых, но за качество, как известно, всегда приходится платить.

    Wago клеммники для соединения проводов

    Невозможно себе представить электромонтажные работы без необходимости соединения проводов. Раньше для этого использовалась скрутка в лучшем случае дополненная пайкой полученного контакта. Этот способ, который зачастую применяется и сегодня, требует затрат времени и определенного навыка.

    Да и само соединение получается неаккуратным и громоздким. Соединение на основе винтовых зажимов избавляет от подобных проблем, но и оно не лишено недостатков. Если винт «недотянуть» или «перетянуть», контакт получается менее надежным.

    В первом случае место соединения может нагреваться и даже стать причиной возгорания проводки, а во втором – возникает риск повреждения провода и самой клеммы. Клеммники Wago избавляют от этих и других подобных проблем.

    Как пользоваться wago

    В данной статье предлагаю рассмотреть основные марки клеммников их конструкцию, преимущество перед альтернативными способами соединения, ну и конечно же как их использовать на практике. Ибо молодые специалисты часто задаются вопросом купил Wago клеммники как пользоваться ими?

    За рубежом наиболее распространены клеммники для соединения проводов фирмы Wago и являются самым применяемым способом соединения проводов. У нас профессиональные электромонтажники о них знают, но применяют с осторожностью.

    Многие ошибочно считают, что подобные соединители не создают необходимого контакта, особенно при монтаже проводки большого сечения. Между тем, этот прогрессивный способ соединения, основанный на изолированных пружинных зажимах, обеспечивает соблюдение всех требований по надежности и качеству при электромонтажных работах.

    Для чего нужны клеммники WAGO

    Всем известно, что при электромонтаже часто возникает необходимость соединить вместе сразу несколько проводов. В этом случае использовать клеммники для соединения проводов является наилучшим решением.

    В отличие от скруток или спаек, являющихся, по сути, неразъемными соединениями, клеммники Wago позволяют легко и быстро отсоединить провода, изменить схему, подключить дополнительную цепь или устройство. Конечно, в особо ответственных случаях можно использовать и пайку, но в большинстве соединений, которые будут работать в нормальных условиях, применения клеммников Wago вполне достаточно.

    Как пользоваться wago

    Как уже упоминалось, работа с клеммами Wago не требует использования дополнительного инструмента. Единственное, что может потребоваться, это специальный инструмент для зачистки от изоляции.

    После этого провод просто вставляется в клеммник и фиксируется в нем. Другим важным преимуществом клемм Wago является то, что они позволяют надежно соединять или наращивать провода, сделанные из разных материалов и разного сечения.

    Как известно, соединять, например, медные и алюминиевые проводники с помощью обычной скрутки недопустимо. Кроме прочего, применение клеммников Wago позволяет экономить место в распределительной коробке или щитке, а само соединение получается аккуратным и надежным.

    Wago клеммники как пользоваться

    Чаще всего клеммники Wago используются в распределительных щитах и коробках, а также для подключения осветительного или иного оборудования. С их помощью можно соединять одножильные и многожильные провода. В зависимости от места установки и требований к соединению, выпускаются клеммники различных серий.

    Клеммы Wago доступны в двух исполнениях: одноразовые, то есть не допускающие обратного изъятия провода, и многоразовые, в которых он фиксируется путем отведения специального зажима. Как пользоваться клеммниками wago рассмотрим оба варианта на примере двух наиболее популярных серий.

    Клеммники Wago 222 серии предполагают многоразовое использование. Для фиксации провода используется специальный рычажок оранжевого цвета. Он позволяет с легкостью разъединить контакт при переналадке схемы или проведении тестирования цепи.

    Как пользоваться wago

    Каждый проводник вставляется в отдельное разъемное гнездо. В основе клеммника применяется плоско-пружинный зажим, позволяющий фиксировать проводники сечением до 4,0 мм2.

    Как пользоваться wago

    Чтобы осуществить монтаж с помощью такой клеммы, следует зачистить изоляцию провода примерно на 1 см, приподнять флажок-зажим, вставить провод и отпустить зажим.

    Как пользоваться wago

    Соединение готово! Благодаря компактному размеру клеммы ее размещение возможно в любом месте, включая компактные коробки под выключатели и розетки. При этом такой вид клеммника не требует опрессовки многожильного проводника .

    Клеммы Wago 773 серии предназначены для однократного соединения и только одножильных проводников. Можно соединять и многожильные, но перед этим их наконечники следует опрессовать.

    Как пользоваться wago

    Эти клеммники могут выпускаться с заполнением специальной токопроводящей пастой или без нее. Паста служит для предотвращения окисления алюминиевых проводов. Клеммы с пастой легко отличить, они выпускаются в черном или темно-сером исполнении.

    Как пользоваться wago

    Соединение происходит аналогично: зачищается провод и вставляется до упора. Но, в отличие от разъемного, здесь отсутствует рычажок, а фиксация осуществляется с помощью внутреннего зажима, закусывающего провод и не позволяющего ему выйти обратно.

    Как пользоваться wago

    В случае крайней необходимости можно, прокручивая и применяя достаточное усилие, вынуть провод из клеммника. Но делать это настоятельно не рекомендуется, так как при этом происходит деформация фиксирующего контакта и надежность последующего соединения не гарантирована.

    Преимущества продукции WAGO

    На основе вышесказанного перечислим основные преимущества клемм Wago:

    1. 1. Скорость монтажа. Зачистка изоляции и фиксация провода в зажиме занимает буквально несколько секунд;
    2. 2. Соединение с использованием клеммников Wago. в отличие от скрутки или опрессовки, не требует дополнительной изоляции;
    3. 3. Возможность производить соединение проводников, имеющих различное сечение и сделанных из разных материалов;
    4. 4. При необходимости соединение может быть легко переделано. Скрутка проводов, особенно ломких алюминиевых, этого не допускает;
    5. 5. Возможность производить диагностику цепи не разрывая ее, так как клеммники для соединения проводов снабжены отверстиями для подсоединения индикаторов или других приборов;
    6. 6. Аккуратность монтажа, способность выполнить соединение в стесненных условиях или если доступная часть провода слишком коротка.

    Как пользоваться wago

    Многие электрики не используют в своей работе клеммы Wago не желая нести дополнительные расходы, связанные с их приобретением. Особенно это касается многоразовых клемм, которые в почти в 2 раза дороже неразъемных.

    При этом большинство забывает о том времени, которое будет сэкономлено при использовании подобных изделий. А известное утверждение «время – деньги» к работе электромонтажника имеет самое прямое отношение.

    Похожие материалы на сайте:

    Источники: http://fb.ru/article/272269/vago-zajim-provodov-instruktsiya-kak-polzovatsya, http://v-teplo.ru/klemmniki-wago.html, http://electricvdome.ru/instrument-electrica/klemmniki-wago.html

    Соединение звезда и треугольник электродвигателя

    0

    Подключение звезда и треугольник – в чем разница?

    Обмотки генераторов, трансформаторов, электродвигателей и других электрических приемников при их подключении к трехфазной сети соединяются двумя способами: звездой или треугольником. Эти схемы подключения сильно отличаются друг от друга и несут на себе разные токовые нагрузки. Поэтому есть необходимость разобраться в вопросе, как производится подключение звезда и треугольник – в чем разница?

    Соединение звезда и треугольник электродвигателя

    Что собой представляют схемы

    Подключение обмоток звездой – это их соединение в одной точке, которая носит название нулевая точка или нейтральная. Она обозначается буквой «О».

    Схема подключения треугольником – это последовательное соединение концов рабочих обмоток, в которых начало одной обмотки соединяется с концом другой.

    Разница очевидна. Но какую цель преследуют эти виды соединения, почему звезда треугольник применяются в разных электрических установках, в чем эффективность той и другой. Вопросов по данной теме возникает немало, с ними и надо разобраться.

    Начнем с того, что при запуске того же электродвигателя ток, который называется пусковым, обладает высоким значением, который превышает номинальную его величину раз в шесть или восемь. Если это маломощный агрегат, то защита такую силу тока может выдержать, а если это электродвигатель большой мощности, то никакие защитные блоки не выдержат. И это вызовет обязательно «проседание» напряжения и выход из строя предохранителей или автоматических выключателей. Сам же двигатель начнет вращаться с небольшой скоростью, отличающуюся от паспортной. То есть, проблем с пусковым током немало.

    Поэтому его надо просто снизить. Есть несколько для этого способов:

    • установить в систему подключения электрического двигателя один из перечисленных приборов: трансформатор, дроссель, реостат;
    • изменяется схема подключения обмоток ротора.

    Именно второй вариант используется на производстве, как самый простой и эффективный. Просто производится преобразование схемы звезда в треугольник. То есть, во время пуска двигателя его обмотки соединяются по схеме звезда, затем как только мотор наберет обороты, переключается на треугольник. Процесс переключения звезды на треугольник производится автоматически.

    Рекомендуется в электродвигателях, где используются одновременно два варианта соединения – звезда-треугольник, к соединению обмоток по схеме звезда, то есть, к их общей точке подключения, подсоединить нейтраль от сети питания. Для чего это необходимо делать? Все дело в том, что во время работы по данному варианту подсоединения появляется высокая вероятность асимметрии амплитуд разных фаз. Именно нейтраль будет компенсировать данную асимметрию, которая обычно появляется за счет того, что обмотки статора могут иметь разное индуктивное сопротивление.

    Соединение звезда и треугольник электродвигателя

    Преимущества двух схем

    У схемы звезда достаточно серьезные достоинства:

    • плавный запуск электрического двигателя;
    • номинальная его мощность будет соответствовать паспортным данным;
    • двигатель будет работать нормально и при кратковременных высоких нагрузках, и при долгосрочных небольших перегрузов;
    • в процессе работы корпус мотора не будет перегреваться.

    Что касается схемы треугольник, то основное ее преимущество – это достижение электрическим двигателем в процессе его работы максимальной мощности. Но при этом рекомендуется строго придерживаться эксплуатационных режимов, которые расписаны в паспорте мотора. Тестирование электродвигателей, соединенных по схеме треугольник, показало, что его мощность в три раза больше, чем соединенных по схеме звезда.

    Если говорить о генераторах, которые выдают ток в питающую сеть, то схемы соединения звезда и треугольник по своим техническим параметрам точно такие же. То есть, выдаваемое напряжение треугольником будет больше, правда, не в три раза, но не менее 1,73 раза. По сути, получается, что напряжение генератора при звезде, равное 220 вольт, преобразуется в 380 вольт, если провести переключение с одного варианта на другой. Но необходимо отметить, что мощность самого агрегата при этом остается неизменной, потому что все подчиняется закону Ома, в котором напряжение и сила тока находятся в обратной пропорциональности. То есть, увеличение напряжения в 1,73 раза, снижает ток точно на такую же величину.

    Соединение звезда и треугольник электродвигателя

    Отсюда вывод: если в клеммной коробке генератора располагаются все шесть концов обмоток, то можно будет получить напряжение двух номиналов, отличающихся друг от друга коэффициентом 1,73.

    Делаем выводы

    Почему соединения треугольником и звездой сегодня присутствуют во всех современных мощных электродвигателях? Из всего вышесказанного становится понятным, что основное требование ситуации – это снизить токовую нагрузку, которая возникает в процессе пуска самого агрегата.

    Если расписать формулы такого подключения, то они будут выглядеть вот так:

    Uф=Uл/1,73=380/1,73=220, где Uф – напряжение на фазах, Uл – на питающей линии. Это соединение звездой.

    После того, как электрический агрегат разгонится, то есть, скорость его вращения станет соответствовать паспортным данным, произойдет переход на треугольник со звезды. Отсюда фазное напряжение станет равным линейному.

    Как правильно провести подключение электродвигателя звездой и треугольником

  • Соединение звезда и треугольник электродвигателя

    Схема подключения трехфазного электродвигателя к трехфазной сети

  • Соединение звезда и треугольник электродвигателя

    Как подключить трехфазный электродвигатель в сеть 220В – схемы и рекомендации

    Соединение звездой и треугольником обмоток электродвигателя

    Соединение звезда и треугольник электродвигателя

    1. Соединение обмоток звездой и треугольником
    2. Запуск трехфазного электродвигателя с переключением со звезды на треугольник
    3. Когда нужно переключаться с треугольника в звезду
    4. Видео

    Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор. Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнит ных потоков. За счет этих потоков, ротор двигателя начинает вращаться.

    В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.

    Соединение обмоток звездой и треугольником

    У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.

    Соединение звезда и треугольник электродвигателя

    При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.

    Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.

    Соединение звезда и треугольник электродвигателя

    Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.

    Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда. Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью. Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.

    Соединение звезда и треугольник электродвигателя

    Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.

    Запуск трехфазного электродвигателя с переключением со звезды на треугольник

    Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя. Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение. При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются магнит ные пускатели и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.

    Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.

    Соединение звезда и треугольник электродвигателя

    Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.

    Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при линейном напряжении сети .

    Когда нужно переключаться с треугольника в звезду

    Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.

    Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.

    Чем отличаются соединения звездой и треугольником

    Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

    Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения «треугольника» и метод «звезды». При соединении концов применяют специально предназначенные для этого перемычки.

    Соединение звезда и треугольник электродвигателя

    Различия между «звездой» и «треугольником»

    Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

    Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

    Соединение «звездой» и его преимущества

    Соединение звезда и треугольник электродвигателя

    Реверсивная схема двигателя 380 на 220 Вольт

    Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

    При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

    Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

    Основные преимущества применения схемы «звезда»:

    • Устойчивый и длительный режим безостановочной работы двигателя;
    • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
    • Максимальная плавность пуска электрического привода;
    • Возможность воздействия кратковременной перегрузки;
    • В процессе эксплуатации корпус оборудования не перегревается.

    Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

    Соединение звезда и треугольник электродвигателя

    Подключение трехфазного двигателя к однофазной сети по схеме звезда

    Соединение «треугольником» и его преимущества

    Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии — конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

    При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

    Основные преимущества применения схемы «треугольник»:

    • Увеличение до максимального значения мощности электрооборудования;
    • Использование пускового реостата;
    • Повышенный вращающийся момент;
    • Большие тяговые усилия.
    • Повышенный ток пуска;
    • При длительной работе двигатель сильно греется.

    Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

    Соединение звезда и треугольник электродвигателя

    Подключение трехфазного двигателя к однофазной сети по схеме треугольник

    Тип соединения «звезда-треугольник»

    В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

    Двигатели с повышенной мощностью обладают большими пусковыми токами, и как следствие при пуске часто вызывают перегорание предохранителей, отключению автоматов. Для снижения линейного напряжения в обмотках статора применяют автотрансформаторы, универсальные дросселя, пусковые реостаты или соединение типа «звезда».

    Соединение звезда и треугольник электродвигателя

    Схемы подключения звездой и треугольником

    В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

    В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

    Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

    Основные преимущества комбинации:

    • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
    • Возможность создания двух уровней мощности.

    Блиц-советы

    1. В момент пуска электродвигателя. его ток пуска в 7 раз больше рабочего тока.
    2. Мощность в 1,5 раза больше при соединении обмоток методом «треугольника».
    3. Для создания плавного пуска и защиты от перегрузок двигателя. часто используются частотные провода.
    4. При использовании метода соединения «звездой». особое внимание уделяют отсутствию «перекоса фаза», иначе оборудование может выйти из строя.
    5. Линейные и фазные напряжения при соединении «треугольник» — равны между собой, как и линейные и фазные токи в соединении «звездой».
    6. Для подключения двигателя к бытовой сети зачастую применяют фазосдвигающий конденсатор.

    Источники: http://onlineelektrik.ru/eoborudovanie/generatori/podklyuchenie-zvezda-i-treugolnik-v-chem-raznica.html, http://electric-220.ru/news/soedinenie_zvezdoj_i_treugolnikom_obmotok_ehlektrodvigatelja/2015-02-21-837, http://housetronic.ru/electro/soedinenie.html

  • Орешки электрические для соединения проводов

    0

    Что такое ответвительный сжим – конструктивные особенности и способ установки

    Орешки электрические для соединения проводов

    Частенько при подключении объекта (это может быть дом или квартира) приходится электрикам проводить подсоединение ответвления к магистральным линиям электропередач. Например, в установленном в подъезде электрическом щитке, через который проходят стояки магистральных контуров, необходимо провести соединение проводов, а точнее, подключить ответвление в квартиру. Как это сделать? В принципе, данная проблема стоит давно, а, значит, способы ее реализации также известны давно. Что сегодня предлагают специалисты? Обычная скрутка, клеммные колодки и ответвительный сжим.

    Начнем с того, что правилами ПУЭ скрутка запрещена. Причин здесь много, так что не стоит на этом останавливаться. Хотя необходимо отметить, некоторые электрики до сих пор ею пользуются.

    Что касается клеммных колодок, то ПУЭ их использовать разрешает. Но с их установкой возникают определенные проблемы.

    • К примеру, для того чтобы произвести соединение проводов и подключение ответвления, надо обязательно магистральный провод разрезать. Что, конечно, нежелательно.
    • Второе – клеммная колодка представляет собой зажимное устройство на винтах. В процессе эксплуатации эти самые винты постепенно откручиваются, расслабляя контакт. Так что саму колодку придется периодически поджимать, для чего придется содержать одного человека.
    • Третье – это открытое устройство, незащищенное ни от атмосферных осадков, ни от механического воздействия. Так что есть большая вероятность, что контакты по-любому будут иметь низкое качество.

    Итак, ответвительные сжимы – это единственное устройство, которое гарантирует простоту подсоединения и качество контактов в процессе всей длительной эксплуатации электрических сетей.

    Орешки электрические для соединения проводов

    Что собой представляют ответвительные сжимы

    Разнообразие сжимов ответвительных сегодня достаточно большое, но особой популярностью среди электриков пользуются так называемые орешки. По сути, это специальная зажимная плашка, изготовленная из анодированной стали, состоящая из двух пластин, в которых сделаны желоба под провода, и все это сжимается четырьмя винтами.

    Сама плашка закрывается специальным корпусом из карболита (вид пластмассы), который состоит из двух частей. Плашка вставляется в корпус, две части которого закрепляются специальными кольцевыми пружинами. То есть, соединение остается внутри. Сам орех в данном случае выступает и в качестве соединительного устройства, и в качестве защитного приспособления.

    Преимущество этого сжима заключается в том, что с его помощью можно соединять между собой алюминиевые и медные провода. При этом магистральный провод нет необходимости резать, просто надо зачистить небольшой отрезок, который бы поместился в плашку. Ответвление присоединяется в перпендикулярный желоб. Кстати, орех может быть разных размеров, то есть, с его помощью можно соединять разные по сечению электрические жилы.

    Орешки электрические для соединения проводов С помощью такого зажима можно соединить медный и алюминиевый провод

    • Для основных магистралей 4-150 мм².
    • Для ответвлений 1,5-120 мм².

    Есть в этом устройстве и два минуса. Первый – провода при соединении придется оголять. К примеру, используя ответвительные зажимы прокалывающего действия, этого делать нет необходимости. Второе – степень защиты у этого сжима всего лишь IP20. Не самый высокий показатель.

    Как правильно использовать сжим «орех»

    Итак, сжим ответвительный выбирается по сечению соединяемых проводов. Чем толще провода, тем больших размеров сам орех, а также зажимная плашка. Поэтому в первую очередь надо измерить длину желобков на пластинах и перенести их на провода с небольшим припуском 3-4 мм. Затем эти участки надо оголить, то есть снять изоляцию, используя, к примеру, острый нож. Учтите, что срезать изоляцию надо под углом, чтобы не повредить саму металлическую жилу.

    К следующим позициям отнеситесь с особой ответственностью.

    • Голые участки проводов надо зачистить наждачной бумагой до металлического блеска. Для этого сам провод предварительно надо обработать кварцевазилиновой пастой.
    • После этого открытый кабель надо протереть чистой тряпочкой и снова нанести кисточкой тонкий слой пасты.
    • После чего необходимо подготовить сам зажим, а точнее, зажимную плашку. Ее надо разобрать и почистить контактные плоскости (желоба) ацетоном.
    • Обязательно проверьте все детали ореха на предмет исправности. Особенно это касается резьбовых соединений винтов.
    • После чего необходимо установить два зажимных винта напротив ответвленного отверстия (желоба). Их надо просто наживить.

    Орешки электрические для соединения проводов Соединение проводов через орех

    Подготовительная часть установки закончена, можно переходить к самому процессу подключения. Итак, плашку надеваем на голый магистральный провод. Затем вставляем провод ответвительной линии в желоб ответвления. Устанавливаются два винта. Теперь четыре крепежа крест накрест зажимаются на каждые два-три оборота. После чего необходимо проверить установку всех проводов. Просто подергайте их руками. И последний штрих – надо удалить излишки пасты тряпочкой.

    Остается только установить две части корпуса сжима на плашку и закрепить их между собой подпружиненными кольцами, стягивая их пластмассовым резьбовым соединением (болт-гайка).

    Способы соедининения алюминиевого провода с медным

  • Орешки электрические для соединения проводов

    Проколы для кабеля СИП – конструкция, выбор и установка

  • Орешки электрические для соединения проводов

    Скрутка проводов правильно – виды, плюсы и минусы

    Способы ответвления проводов

    Орешки электрические для соединения проводовОчень часто электрикам приходится подключать электроустановку к уже существующей линии, проходящей мимо в относительной близости. Иными словами, необходимо создать ответвление проводов .

    Примером может послужить подключение частного дома к ВЛ 0,4 кВ или подключение квартирного электрощитка к подъездным электрическим стоякам. В обоих этих случаях линия проходит, возможно, совсем недалеко – вот они, заветные 220 или 380 вольт с необходимым резервом по мощности, до них рукой подать. Но как же к ним подключиться?

    Поскольку проблема эта распространенная и давно известная, то и вариантов ее решения накопилось уже достаточно много, и в этой статье мы попробуем рассмотреть их подробно.

    Самый первый способ создания ответвления, который приходит на ум – это старая добрая скрутка. Тут уж мудрить не приходится – если провод изолированный (СИП. к примеру), то он зачищается в месте контакта, а линия-ответвление наматывается на него с большим количеством витков для обеспечения большой площади контакта.

    Разумеется, тому, кто решился на скрутку, придется считаться с тем, что:

    — в священной для каждого электромонтажника книге – ПУЭ – о скрутках отзываются крайне неодобрительно и практически предают их анафеме. Поэтому электрик, выполнивший скрутку, берет на себя повышенную ответственность;

    — скрутка возможна только если материал провода магистрали и ответвительной линии одинаков. То есть, медь – к меди, алюминий к алюминию. Иначе, скрутка долго не продержится и может стать причиной самых серьезных проблем;

    — скрутку стоит делать, если вы уверены в том, что сделаете ее хорошо и качественно. Если сомневаетесь в своем опыте и квалификации – пользуйтесь специальными сжимами или колодками .

    Орешки электрические для соединения проводов

    Рис. 1. Универсальная ответвительная клеммная колодка ДКС

    Колодки одобрены ПУЭ. Но здесь есть тоже несколько «но». Во-первых, для применения клеммной колодки магистральный провод нужно разрезать. Это совсем нежелательно. Во-вторых, клеммная колодка – это винтовое соединение, нуждающееся в систематическом обслуживании и протяжке контактов.

    Это тоже не очень удобно. Ну и, в-третьих, клеммная колодка практически ничем не защищена ни от атмосферных осадков, ни от механических воздействий. Одним словом, надежность ответвительного соединения клеммной колодкой очень низкая. Поэтому лучше пользоваться ответвительными сжимами .

    И такие сжимы выпускаются в достаточно большом ассортименте. Наиболее популярны среди них так называемые «орехи». Конструкция у них следующая: магистральный и ответвительный провод с разных сторон прижимаются к контактной плашке из анодированной стали с помощью четырех винтов и пластин с желобками. Весь этот «бутерброд» закрывается карболитовым корпусом, который стягивается двумя пружинными кольцами.

    Орешки электрические для соединения проводов

    Рис. 2. Ответвительные сжимы («Орешки»)

    Маркировка «орешков» включает в себя букву «У» и трехзначный номенклатурный номер. Орехи хороши тем, что позволяют соединять алюминиевые и медные провода, так как конструкция этих сжимов исключает их прямой контакт – стальная плашка является «посредником». Кроме этого, для соединения орехами магистральный провод не нужно разрезать, а сечения соединяемых проводов могут быть самыми разными: от 4 до 150 кв. мм. для магистрального провода и от 1,5 до 120 кв. мм. для ответвительного.

    «Орехи» – это, конечно, хорошо, но хотелось бы большего. В частности, не очень удобно то, что для соединения проводов их необходимо зачистить от изоляции. И под напряжением производить монтаж «орешков» не то, что неудобно – попросту опасно. Вдобавок, степень защиты сжима «орех» от внешних воздействий часто оставляет желать лучшего – всего IP20.

    Приведенных недостатков лишены прокалывающие зажимы. Эти зажимы являются герметичными, не требуют зачистки магистрального провода, а значит, не ухудшают его эксплуатационных качеств. Весь секрет – в специальных зажимных пластинах с зубцами, способными проколоть изоляцию и обеспечить электрический контакт с проводом.

    Усилие затяжки сжимных болтов регулируется срывной шестигранной головкой, отсюда следует, что прокалывающие зажимы предназначены для одноразового использования. Головки зажимных болтов электрически изолированы от контактных пластин, поэтому монтаж прокалывающих зажимов можно производить даже под напряжением. Чаще всего такие зажимы применяют при монтаже ВЛ проводом СИП.

    Орешки электрические для соединения проводов

    Рис. 3. Герметичный прокалывающий зажим ЗПО

    При монтаже ответвительных линий в условиях цеха или жилого дома бывает логичнее применять сжимы типа ОВ. Их тоже можно было бы назвать «прокалывающими», и применение их не требует вообще никакого инструмента и специальных навыков.

    Соединяемые провода без зачистки изоляции укладываются в зажим, который просто защелкивается руками. При этом латунный коннектор прокалывает изоляцию проводов и обеспечивает надежное электрическое соединение. Однако ОВ соединяют медные и алюминиевые провода с максимальным сечением всего 6 кв. мм. к тому же сечение магистрального и ответвительного проводов должны быть примерно одинаковы, поэтому их и применяют не очень часто.

    Орешки электрические для соединения проводов

    Рис. 4. Ответвители проводов типа ОВ

    Рассмотренные устройства для выполнения ответвлений проводов нельзя однозначно классифицировать на «лучшие» и «худшие». Под конкретную ситуацию, задачу и объект подходит определенный ответвительный сжим, и электрик обязан безошибочно его выбрать. Тогда ответвление прослужит долго и надежно.

    Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.

    Информация и обучающие материалы для начинающих электриков.

    Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.

    Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+

    Перепечатка материалов сайта запрещена.

    Орешки электрические для соединения проводов

    Соединение проводов зажимами типа «орех»

    Соединение проводников с помощью «орешка» является довольно-таки распространенным явлением. Кабельный сжим так назван из-за внешнего сходства. Термин «орех» относится к общепринятым и используется в качестве элемента профессионального сленга у специалистов-электроэнергетиков. Официальное наименование приспособления – ответвительный зажим или сжим. В этой статье мы расскажем,что собой представляет орех для соединения проводов и как пользоваться этим соединителем.

    Назначение и преимущество соединителей

    Главным предназначением данного зажима является выполнение необходимых ответвлений от магистрального электрического провода без разрыва основной линии. Соединитель типа орех устанавливается в месте соединения магистрального кабеля с ответвительными проводами без его разрезания. Для этого достаточно просто снять часть внешней изоляции и закрепить сжим с проводом.

    Орешки электрические для соединения проводов

    Преимуществом является то, что «орешки» позволяют соединять медные и алюминиевые электрические провода. Важно учитывать, что соединение меди с алюминием без применения промежуточной пластины, преимущественно латунной, недопустимо, так как через некоторое время может начаться процесс окисления.

    Соединение проводников при помощи ответвительного сжима чаще всего используют, когда необходимо произвести монтаж электрических сетей бытового или промышленного назначения, либо произвести подключение осветительного электрооборудования. Использование орехов для соединения проводов возможно во всех сетях электроснабжения напряжением до 660 Вольт.

    Пример применения

    Рассмотрим многоэтажный дом, состоящий из семи этажей. Как известно, в подъезде на каждом этаже принято располагать распределительные щитки. Начиная с нижнего этажа до верхнего проводится четырехжильный, либо пятижильный кабель (в новых домах с современной проводкой, где отдельно идет заземляющий проводник). Он проходит через все щитки на этажах. От каждого щитка осуществляется уже питание квартир. При таком раскладе применение соединителя типа «орех» просто крайне необходимо для того, чтобы обеспечить соединение электрических проводов на каждом этаже с общим магистральным кабелем без его разрыва на каждом отдельном этаже.

    Орешки электрические для соединения проводов

    Если в данной ситуации производить разрыв «магистралки» на всех этажах, подсоединяя ее на клеммные колодки. то это значительно снизит уровень надежности электроснабжения потребителей. То есть, при отсутствии контакта на одной из фаз у потребителей нижних этажей, потребители всех верхних этажей, которые, в свою очередь, подсоединены к данной фазе, в таком случае рискуют остаться без напряжения.

    Конструкция сжима

    Устройство ответвительного сжима следующее: в диэлектрическом корпусе из поликарбоната (материал, относящийся к группе термопластов, представляющий собой сложный полиэфир угольной кислоты и двухатомных спиртов) расположен металлический сердечник. Данный сердечник включает в себя две плашки, а также пластину между ними. Все части соединены стяжными болтами. В обеих плашках расположены пазы, куда укладываются провода. Подбор «ореха» производится в зависимости от сечения магистрального и ответвительного кабеля/провода. Маркировка зажимов может быть следующей: У731М, У733М, У734М, У739М, У859М, У870М, У871М, У872М. В таблице ниже сведены существующие типы соединительных зажимов и размеры проводников, соответствующие каждой модели:

    Орешки электрические для соединения проводов

    Правила соединения проводов

    Для соединения нужного проводника с магистральным электрическим кабелем сначала следует разобрать зажим. Чтобы это осуществить, необходимо снять стопорные кольца, находящиеся по бокам «ореха». После этого выкручиваются болты, соединяющие плашки и пластину между ними.

    Затем требуется снять изоляцию с кабеля в соответствии с длиной промежуточной пластины внутри сжима. Счищать изоляцию больше не целесообразно.

    Как соединить провода дальше? Очень просто! Оголенные участки проводников вставляются в пазы плашек, после чего закручиваются винтами. Теперь получившаяся конструкция укладывается обратно в изолированный поликарбонатный корпус «орешка». Можно заметить, что в корпусе есть четыре отверстия. Первое отверстие наглухо запаяно, второе предназначается для ответвительного кабеля, через оставшиеся два отверстия протягивают магистральный электрический проводник. Таким вот образом и производится соединение электрических кабелей орехом.

    Орешки электрические для соединения проводов

    Не стоит забывать, что соединение типа «орех» не способно гарантировать герметичность всех стыков, поэтому в процессе эксплуатации при разных климатических и погодных условиях внутрь корпуса может попадать пыль, грязь и влага. Чтобы обеспечить некоторую степень защиты, корпус сжима нужно заизолировать или, иными словами, просто обмотать изолентой.

    Напоследок рекомендуем просмотреть видео, на котором наглядно показывается, как соединить провода с помощью зажима типа орешек:

    Теперь вы знаете, что такое электрический орех для соединения проводов, какая у него конструкция и назначение. Надеемся, предоставленная информация была для вас полезной и интересной!

    Будет интересно прочитать:

    Источники: http://onlineelektrik.ru/eprovodka/cabeli/chto-takoe-otvetvitelnyj-szhim-konstruktivnye-osobennosti-i-sposob-ustanovki.html, http://electrik.info/main/electrodom/448-sposoby-otvetvleniya-provodov.html, http://samelectrik.ru/soedinenie-provodov-zazhimami-tipa-orex.html

  • Соединение алюминиевых и медных проводов между собой

    0

    Знаю, что тема соединения алюминиевых и медных проводов между собой стара, как мир, но хочется затронуть эту тему и рассмотреть способы соединения проводов из разных материалов.

    Когда начинается ремонт в квартире, то встает вопрос о ремонте или замене (полной или частичной) электропроводки. Кто-то хочет перенести розетки или выключатели, или добавить новые. В таком случае без соединения проводов не обойтись. Вот тут и начинается самое интересное.

    Как известно, в старых домах, построенных в Советском Союзе, вся электропроводка делалась алюминиевым проводом. Почему? Алюминий дешевый материал, имеет хорошую проводимость, химически стоек, легкий, поэтому трудностей с монтажом не возникало. Правда и нагрузка в квартирах была маленькой. С развитием техники, появились различные мощные приборы, и использование алюминиевых проводов стало не целесообразно. Поэтому в квартирах стали использовать медные провода.

    При ремонте или замене электропроводки необходимо использовать медный провод. Хорошо, если происходит полная замена проводов. А как быть, если мы только частично меняем провода? Ведь тогда нам надо соединять алюминиевый провод с медным между собой.

    Раньше алюминиевые провода соединяли с помощью обычной скрутки. Потом стали соединять также медные провода. Но медный и алюминиевый провод скруткой не соединишь,

    Соединение алюминиевых и медных проводов между собой

    Скрутка алюминий и медь

    хотя так раньше поступали( да и сейчас поступают) многие электрики. Тем более, в настоящее время скрутка вообще запрещена правилами (ПУЭ п. 2.1.21, 2.1.71 ). Кто-то скажет, что в этом пункте правил нет прямого запрета на скрутку, но скрутка не указана. как один из способов соединения проводов, поэтому считается, что скрутки — ЗАПРЕЩЕНЫ.

    Почему нельзя соединять провода скруткой?

    Каждый материал обладает таким свойством, как линейное расширение – изменение линейных размеров при изменении температуры. Медь и алюминий обладают разными коэффициентами линейного расширения, поэтому при протекании тока через скрутку со временем происходит ослабление контакта между проводами, увеличивается зазор между проводами, сопротивление в месте контакта растет, идет нагрев места контакта, что в дальнейшем может привести к разрушению контакта, обгоранию изоляции проводов. На фото слева видно, как обгорела изолента на скрутке алюминий-медь. А справа эта же скрутка после удаления горелой изоленты.

    Соединение алюминиевых и медных проводов между собой

    Обгоревшие провода в скрутке

    Соединение алюминиевых и медных проводов между собой

    Обгоревшая изолента на скрутке алюминий-медь

    А тут уже недалеко и до беды – пожара. Поэтому если электрик предлагает Вам соединить алюминиевый и медный провода с помощью скрутки и обмотать изолентой, то гоните его в шею из своей квартиры.

    Как же правильно соединить алюминиевый и медный провод между собой?

    Существуют несколько способов соединения проводов из разных материалов:

    Каждый из этих способов имеет плюсы и минусы. Рассмотрим каждый из них в отдельности.

    Для такого соединения потребуется болт с гайкой, несколько стальных шайб, которые нужно будет проложить между проводами, и изолента, чтобы заизолировать соединение. Чтобы сделать болтовое соединение, нужно на концах проводов сделать колечки такого размера, чтобы в них входил болт, с помощью которого будет осуществляться соединение. Потом собираем нашу конструкцию, прокладывая между проводами шайбы, и с помощью ключей затягиваем гайку и получаем отличное соединение, к тому очень надежное. Один недостаток: соединение получается громоздким и его очень трудно запихнуть в распределительную коробку.

    Этот вид соединения выполняется с помощью винтовых клемм (клеммных колодок),

    Соединение алюминиевых и медных проводов между собой

    которые изолированы друг от друга. Винтовое соединение проводов встречается обычно в светильниках и люстрах. Винтовые клеммы представляют собой латунные трубки с корпусом из пластика. Трубки имеют два винта для крепления провода. Таким способом можно соединять провода не только из разных материалов, но и однородные.

    Недостатки такого соединения:

    — может лопнуть пластиковый корпус клеммника, соответственно нарушится изоляция;

    — может лопнуть сама латунная трубка. Такое происходит. Когда слишком усердно затягиваешь винты;

    — винтом можно передавить провод при затягивании, впоследствии он отломится. Причем это касается не только алюминиевых, но и медных проводов;

    — можно сорвать винт при затягивании. Тогда о хорошем контакте говорить не приходится;

    — если приложить недостаточное усилие, то можно не дотянуть винт, и получить плохой контакт.

    Винтовые клеммники удобно использовать как временное соединение, или для подключения светильников. Также они выручают в том случае, если необходимо нарастить обломанный провод, кончик которого торчит из стены.

    Соединение с помощью клеммников WAGO

    В России клеммники WAGO появились не так давно, хотя первые безвинтовые клеммники были разработаны в Германии в 1951 году. Существует множество самозажимных клеммников WAGO. но нас интересуют только те, которые подходят для соединения алюминиевых и медных проводов.

    Соединение алюминиевых и медных проводов между собой

    Клеммники WAGO с пастой для соединения алюминиевых и медных проводов

    Это специальные клеммы серого или черного цвета, внутри которых находится токопроводящая паста. Эта паста предотвращает окисление алюминиевых проводов. Данные клеммники являются одноразовыми, хотя при желании их можно использовать повторно. Правда, при этом качество соединения ухудшается.

    Самозажимные клеммники WAGO имеют множество плюсов:

    • быстрый и аккуратный монтаж;
    • соединение не нужно изолировать;
    • можно соединять провода из разных материалов и разных сечений;
    • соединение легко можно переделать, если потребуется;
    • соединение клеммниками WAGO меньше, чем скрутка. Поэтому легче уместить в распределительной коробке(см. фото);

    Соединение алюминиевых и медных проводов между собой

    Клеммники WAGO и скрутки

    • можно использовать для соединения нескольких проводов (от 2 до 8)

    Единственным недостатком данных клемм является их стоимость. Поэтому многие электрики используют винтовые клеммники и даже делают скрутки. Но я считаю, что данный недостаток компенсируется плюсами, а их существенно больше.

    Я и мои коллеги, которые осуществляют электромонтажные работы в Сызрани. используем именно клеммники WAGO для соединения алюминиевых и медных проводов.

    Конечно, в данной статье описаны не все способы соединения проводов. Я вам рассказал о тех способах, которые сам использовал или использую при соединении проводов. Если вас интересуют другие способы соединения проводов, то вы можете прочитать статью: «Способы соединения проводов в распределительных (распаячных) коробках».

    Если Вам требуется помощь электрика. который сделает все правильно и аккуратно, то Вы можете обращаться ко мне, воспользовавшись информацией на данной странице. Также вы можете задать вопросы в комментариях к данной статье. С удовольствием на них отвечу.

    Соединение алюминиевых и медных проводов между собой

    Способы соединения электрических проводов из меди и алюминия

    До сих пор существует немалое количество помещений, где электрическая проводка изготовлена из алюминия. При этом современные системы основаны на применении меди в качестве проводника. Именно поэтому актуальна проблема стыковки проводов из этих разнородных материалов. О том, как состыковать провода из меди и алюминия пойдет речь ниже.

    Электрохимическая коррозия

    Нередко можно встретить высказывания о том, что медь и алюминий нежелательно соединять в одно целое. С точки зрения совместимости материалов — это справедливые утверждения. А что насчет соединения меди и оцинковки или стали и серебра? Существует множество вариантов металлических пар, и запомнить, какие из них совместимы между собой, а какие нет, сложно. Для упрощения задачи существуют специальные таблицы, одна из которых представлена ниже.

    Таблица электрохимических потенциалов (мВ), возникающих между соединенными проводниками.

    Соединение алюминиевых и медных проводов между собой

    Для понимания вопроса нужно знать, какие процессы происходят при касании друг друга разных проводников электричества. Если влажность отсутствует, контакты в любом случае будут надежными. Однако на практике такая ситуация невозможна, поскольку в атмосфере всегда присутствует влага, которая и нарушает соединения.

    Каждому проводнику электричества присущ некоторый электрохимический потенциал. Данное обстоятельство применяется человеком для практических целей, к примеру, на основе разных потенциалов работают аккумуляторы и батарейки.

    При попадании влаги на соприкасающиеся металлические поверхности возникает короткозамкнутая гальваническая среда, происходит деформация одного из электродов. Точно также разрушается и один из двух металлов. Таким образом, чтобы определить совместимость металлов, нужно иметь информацию об электрохимическом потенциале всех участвующих в реакции материалов.

    Соединение алюминиевых и медных проводов между собой Что будет, если медь соединить напрямую с алюминием

    По техническим регламентам разрешается механическая стыковка металлов, если электрохимическое напряжение между двумя материалами не выше 0,6 мВ. К примеру, из таблицы, приведенной выше, можно установить, что в случае соединения алюминия и меди электрохимический потенциал равен 0,65 мВ, что значительно выше, чем при стыковке той же меди с дюралюминием (0,20 мВ).

    И, тем не менее, если очень нужно, то можно соединить и такие не совсем совместимые материалы, к каковым относятся медь и алюминий. О том, как соединить медные и алюминиевые провода, пойдет речь ниже.

    Обзор способов соединения

    Используется несколько способов соединения алюминиевых и медных проводов. Причем в каждом из описываемых случаев понадобятся специальные приспособления. Рассмотрим каждый тип стыковки по отдельности.

    Болтовое соединение

    Данный тип соединения наиболее распространенный, поскольку отличается простотой и дешевизной. Если все делать правильно, проводное соединение с помощью гаек и болтов обеспечит надежный контакт на весь срок эксплуатации проводки и электрических приборов. К тому же всегда можно разобрать соединение, присоединить дополнительные проводники и т.п. Благодаря резьбовому соединению, теряется актуальность электрохимической несовместимости металлов, появляется возможность состыковать алюминий и медь, толстые и тонкие провода, многожильные и одножильные. При этом важно избегать прямого контакта между разнородными материалами, делая прокладки из пружинных шайб.

    Для выполнения работы понадобится болт и гайка, а также шайба (она должна быть изготовлена из анодированной стали).

    Соединение алюминиевых и медных проводов между собой

    Соединение выполняется следующим образом:

    1. Снимаем с проводов изоляционный слой на небольшую длину (примерно на четыре диаметра болта). Также выполняем зачистку проводника, особенно если его жилы подверглись окислению. Формируем колечки из жил.
    2. Вначале к болту в один обхват прикручивается алюминиевый проводник.
    3. Надеваем шайбу.
    4. Теперь черед медного проводника. Также прикручиваем его в один оборот.
    5. Далее навинчиваем гайку таким образом, чтобы добиться надежного соединения.

    Обратите внимание! Если стыковка осуществляется для эксплуатации в помещении, где по техническим условиям имеется вибрация, для качественного результата понадобится дополнительная гайка.

    Существует несколько вариантов клеммных соединений. Одним из вариантов являются так называемые «орешки». Столь необычное название клеммников происходит из-за их внешнего сходства с орехами. Выпускается несколько разновидностей клемм-«орешков».

    Соединение алюминиевых и медных проводов между собой

    Наиболее примитивная по своему устройству модель имеет внутри три разграничительные пластинки. Проводники располагаются между пластинками. Таким образом, удается избежать непосредственных контактов между разнородными материалами. При этом «орешки» позволяют сохранять подводящий контур электроцепи.

    Чтобы добиться целостности контура, необходимо зачистить подводящий проводник от изоляционного слоя, отвинтить пару болтов, установить между пластинок оголенный провод и снова закрутить болты. С отводящих концов нужно удалить изолятор, а затем направить провода в отверстия, расположенные перпендикулярно по отношению к подводящему каналу. Далее проводники фиксируются между другими разграничительными пластинками.

    Имеется на рынке и более сложная модель, конструкция которой устроена таким образом, что в разделке проводников отсутствует надобность. Дело в том, что пластинки устройства содержат зубчики, которые при сдавливании их болтами просто разрывают изоляционный слой. Описанный вариант стыковки считается очень надежным.

    Соединение алюминиевых и медных проводов между собой

    Есть еще один вариант клеммников — обычные колодки. Устройство представляет собой планку с клеммами. Для соединения двух разнородных материалов нужно зачистить их концы и направить провода в клеммы. Концы фиксируются болтами, которые находятся поверх клеммных отверстий.

    Клеммные колодки Wago

    Соединение медных и алюминиевых проводов можно осуществить при помощи клеммных колодок Wago. Данное устройство относится к вышеупомянутым клеммам, однако о колодках Wago следует рассказать чуть подробнее ввиду их популярности среди покупателей.

    Соединение алюминиевых и медных проводов между собой

    Wago выполняется в двух вариантах: одноразовые с несъемным проводом и многоразовые — с рычагом, который дает возможность неоднократной установки и удаления проводника.

    Обратите внимание! Клеммники Wago рекомендуется применять только в осветительных приборах. Если нагрузка будет слишком велика, контактная пружина перегревается, в результате чего нарушаются контакты между проводниками и пластинками.

    Wago используется для всех видов одножильных проводов, сечение которых находится в промежутке между 1,5 и 2,5 квадратными миллиметрами. Колодку можно применять в распредкоробках с силой тока до 24 ампер. Однако на практике считается, что 10 ампер более чем достаточно и большие показатели приведут к перегреву.

    Соединение алюминиевых и медных проводов между собой

    Для соединения проводников нужно с усилием направить один из них в колодочное отверстие, в результате чего он там надежно закрепится. Для изъятия проводника из отверстия также понадобится приложить усилие. Следует иметь в виду, что в результате удаления провода из одноразового клеммника контакт может деформироваться, поэтому в следующий раз надежный контакт не гарантирован.

    Гораздо более удобно использовать многоразовое устройство Wago. Характерная особенность такого клеммника — наличие оранжевого рычага. С помощью подобного приспособления можно состыковывать или разъединять все виды проводов с сечением от 0,08 до 4 квадратных миллиметров. Допустимый уровень тока — 34 ампера.

    Соединение алюминиевых и медных проводов между собой

    Для создания соединения нужно удалить с провода изоляцию на 8-12 миллиметрах, поднять кверху рычаг, направить провод в отверстие клеммника. Далее возвращаем рычаг в обратное положение, фиксируя тем самым провод в клемме.

    Единственный существенный недостаток Wago — более высокая стоимость в сравнении с традиционными клеммами.

    Этот способ стыковки разнородных проводников напоминает болтовой. Однако вместо гайки и болта применяется заклепка, образующая неразъемное соединение. Иными словами, после фиксации удалить заклепку без ее порчи уже нельзя.

    Для выполнения стыковки зачищаем оба проводника от изоляционного материала, а также загибаем провода в колечки. Далее нанизываем на заклепку одно из колечек, после этого надеваем стальную шайбу, затем вновь нанизываем колечко, но уже второго проводника.

    Соединение алюминиевых и медных проводов между собой

    Заклепка с одной из сторон имеет шляпку. Теперь нужно расплющить вторую сторону, сформировав этим вторую шляпку, которая и будет выступать в качестве крепления. Деформация заклепки осуществляется либо молотком, либо специальным инструментом, схожим с плоскогубцами. Методика стыковки заклепками позволяет получить очень качественное соединение.

    При желании можно спаять два разнородных металла. Однако при этом понадобится соблюдение некоторых технологических нюансов.

    Насчет меди никаких проблем с пайкой не будет, а вот с алюминием дело обстоит сложнее. Дело в том, что в результате пайки и под влиянием кислорода на металлической поверхности появляется амальгама. Данный сплав-пленка невероятно химически устойчив, из-за чего у него не возникает адгезии с припоем. Чтобы устранить пленку понадобится раствор медного купороса, батарейка «Крона» и фрагмент медной проволоки.

    Соединение алюминиевых и медных проводов между собой

    На проводе из алюминия зачищаем участок под пайку, а после этого наносим туда немного купороса. Алюминиевый провод закрепляем на отрицательном полюсе батарейки, а медную проволоку крепим одним концом на положительном полюсе, а другой конец кладем в медный купорос. Спустя какое-то время алюминий покроется медным слоем, на который и можно напаять медный проводник.

    Качество соединения

    В большинстве рассмотренных ранее случаев применятся жесткое закрепление очищенных от изоляционного слоя проводников. Однако при стыковке меди и алюминия необходимо принимать во внимание один важный технологический нюанс: алюминий под влиянием нагрузки приобретает пластичность, как выражаются специалисты, начинает «течь». В результате этого процесса происходит ослабевание соединения, а потому болты нужно регулярно подтягивать. Если вовремя не выполнять подтяжку болтов, клемма может просто загореться из-за сильного перегрева.

    Полезные советы

    Существует ряд правил, придерживаясь которых, можно добиться качественного соединения:

    1. Проводники с множеством жил нельзя зажимать слишком сильно. В таких проводах жилы слишком тонкие, они легко рвутся под влиянием сдавливания. Следствием разрывов становится перегрузка на оставшиеся жилы, из-за чего возможно возгорание.
    2. Немаловажно правильно подобрать клемму с учетом сечения проводника. Если канал слишком узкий, проводник не поместится, а если широкий — будет выпадать.
    3. Латунные гильзы и клеммы очень хрупкие, поэтому не стоит слишком сильно их зажимать.
    4. Следует внимательно относиться к маркировке, где подсказана максимально возможная сила тока. Причем данного показателя лучше не достигать, ограничиваясь не более чем 50 % нагрузкой.

    Обратите внимание! Не рекомендуется покупать безымянные товары китайского производства. Соединители — слишком важная деталь, чтобы на них экономить. Лучше всего отдавать предпочтение изделиям известных фирм (в качестве примера можно привести швейцарскую компанию «ABB»).

    Многожильные провода

    Как уже говорилось ранее, проводники с множеством жил нельзя сильно пережимать. Для соединения многожильных проводов чаще всего используются гильзы или обычные скрутки. Об этих методах далее расскажем чуть подробнее.

    Гильза представляет собой защитный колпачок из пластика, под которым находится полый металлический наконечник. Прежде всего, необходимо удалить изоляционный слой с проводника. Далее жилы скручиваются в одно целое, и получившаяся «косичка» направляется в гильзу. Далее гильза обжимается (для этой операции подойдут пассатижи). Наконечник гильзы вставляется в клемму. Для повышения надежности соединения гильзу можно обработать припоем.

    Среди электриков-профессионалов скрутка не пользуется почтением. Однако бывают ситуации, когда скрутка — наиболее удобный способ выхода из положения (к примеру, для создания временного соединения или при отсутствии необходимых материалов).

    Итак, скрутка из меди и алюминия разрешается лишь после основательной зачистки алюминиевой поверхности. Если медный проводник имеет много жил, все имеющиеся жилы нужно собрать в одну «косичку». Также медь нужно покрыть припоем — это улучшит контакт.

    При скручивании важно не допустить разрыва жил. Концовки лучше всего прикрыть изолирующими защитными колпачками, приобрести которые можно в любом магазине хозтоваров.

    Обратите внимание! Скрутка недопустима в помещениях с влажным воздухом.

    Итак, в соединении медных и алюминиевых проводников нет ничего сложного. Нужно только помнить о цене ошибки: неправильно соединенные провода могут стать причиной не только отказа электробытовой техники, но и пожара.

    Как соединить алюминиевые провода

    Практически каждый электрик скажет и согласится с тем, что электрика это наука о контактах. На практике это становится очевидным. Большое количество проблем в электроснабжении образуется по причине большой перегрузки проводки, а также из-за слабых контактов в распаечной коробке. В этой статье, мы остановимся на последней проблеме, а именно как соединить алюминиевые провода.

    В чем их особенность

    Соединение алюминиевых и медных проводов между собой

    Алюминий имеет особенные свойства металла, которые могут вызывать затруднения при соединении. Вследствие окисления, на алюминии образуется оксидная пленка, которая препятствует прохождению электрического тока. Эта пленка расплавится только при температуре не менее 2000°С, а этот показатель выше температуры плавления самого алюминия. Более того, если зачистить оксидную пленку механическим путем, то спустя время она появляется повторно.

    Если вы захотите спаять алюминий, то эта пленка будет препятствовать сцеплению припоя с жилой. Также при сварке пленка образует включения, которые негативно сказываются на качестве контакта. Кроме всего прочего, алюминий относится к категории металлов, которые отличаются высокой текучестью и хрупкостью. Как следствие контакт следует полностью защитить от возможных механических воздействий. Например, если соединить алюминий болтовым зажимом, то необходимо регулярно подтягивать контакт, так как алюминий, образно говоря, «вытекает» из-под контакта, который, в свою очередь, ослабевает.

    Существуют ли тогда способы надежного соединения алюминиевого провода? Рассмотрим несколько распространенных методов и решим, как лучше всего выполнять эту работу.

    Соединение алюминиевых и медных проводов между собой

    Этот метод соединения очень прост. Необходимо зачистить провод от изоляции на 20 мм. После жилу рекомендуется зачистить мелкозернистой шкуркой. Далее оголенную жилу скручиваете в колечко и вставляете в зажимной винт, которые следует плотно закрутить.

    Соединение алюминиевых и медных проводов между собойКомплектация для винтового соединения

    Минус такого метода соединения в том, что из-за текучести алюминия, время от времени контакт необходимо подтягивать. Поэтому место соединения должно быть в доступном месте.

    Соединение алюминиевых и медных проводов между собой

    В этом случае применяются специальные клеммники. За счет наличия специальной пружины, нет необходимости регулярно подтягивать контакт. Вставленный зачищенный алюминиевый провод надежно удерживается. Существуют клеммники как одноразовые, так и многоразовые. Одноразовые используются для соединения проводов, без дальнейшего разъединения. Провод вставляет в отверстие зажима, обратно его не вытянуть. Что касается многоразового соединения, то провод легко вытягивается, если нажать на специальный рычаг, удерживающий провод.

    Соединение алюминиевых и медных проводов между собой

    В редких случаях, алюминиевый провод можно соединить методом скрутки. Сразу стоит отметить, что этот метод очень ненадежный и даже несмотря на то, что в советское время его использовали сравнительно часто. Отчасти объясняется это тем, что в прошлом количество бытовых приборов и соответственно нагрузки на проводку было меньше. Теперь картина выглядит иначе.

    Более того, срок такого соединения зависит от разных факторов, например, нагрузка по току, влажность и температура. Если температура повышается, то металл расширяется, из-за чего расширяется зазор между проводами. Это может привести к переходному сопротивлению, место контакта будет греться и после этого образуется окисление и, в конце концов, контакт полностью нарушится. Однако такой процесс продолжается долгое время, поэтому для временных соединений метод скрутки допустим.

    При соединении алюминия таким методом, важно придерживаться таких правил:

    • Провода должны равномерно обвивать друг друга.
    • Если провод толстый, то витков должно быть не более трех, а для тонкого не меньше пяти.
    • Если соединяется медный и алюминиевый провод, то медный обязательно нужно залудить.
    • В качестве изоляции контакта рекомендуется использовать термоусадочную трубку.

    Неразъемное соединение

    Соединение алюминиевых и медных проводов между собой

    В эту категорию относится несколько методов, а именно:

    Каждый из этих методов имеет свое место. На выбор влияет несколько факторов:

    • Наличие подходящего инструмента и оборудование.
    • Предполагаемая нагрузка тока.
    • Диаметр провода.
    • Наличие расходного материала.
    • Наличие соответствующих навыков.

    Рассмотрим каждый метод неразъемного соединения по отдельности.

    Соединение алюминиевых и медных проводов между собой

    Быстрый и надежный метод соединения. Тем более эта технология актуальна, если следует произвести большое количество соединений. Однако для этого необходимо иметь сварочный трансформатор и навыки.

    Процесс сваривания выглядит следующим образом:

    • Провода скручиваются между собой.
    • На торец наносите специальный флюс.
    • После происходит сварка угольным электродом до 2 секунд.
    • В результате на конце скрутки должна образоваться капля.
    • Каплю следует обработать растворителем, а после покрыть лаком.
    • Когда лак высох, соединение изолируется.

    Соединение алюминиевых и медных проводов между собой

    Метод пайки соединения несложный. Для этого потребуются такие компоненты, как канифоль, паяльник, припои и дополнительные элементы. Так, провод скручивается, а после паяльником наносите на них припой.

    Опрессовка

    Соединение алюминиевых и медных проводов между собой

    Для такого соединения потребуются специальные пресс-клещи и гильзы, которые представляют собой полые стержни. Для опрессовки зачищаете конца провода, вставляете их в гильзу и в трех местах выполняете опрессовку. Также дополнительно можно скрутить провода.

    Соединение алюминиевых и медных проводов между собойНабор для опрессовки

    Если провод алюминиевый, то используйте алюминиевую гильзу, для медных – медную гильзу. Если соединяете алюминий с медью, то в продаже есть медно-алюминиевые гильзы.

    Алюминиевый и медный провод

    Соединение алюминиевых и медных проводов между собой

    Соединение 2 проводов из меди и алюминия может вызвать некоторые проблемы. Проблема заключается в разности потенциалов, разница которого достигает до 0,65 мВ. При повышении влажности из-за этой разницы контакт будет разрушаться. Более того, контакт будет нагревать, что может привести к плачевным последствиям.

    Поэтому рекомендуем производить стыковку этих двух проводов так, чтобы между ними не было прямого контакта, а именно:

    • неразъемное;
    • резьбовое;
    • клеммное;
    • с пружинным контактом.

    Используя эти методики, алюминиевые соединять с медными проводами можно.

    В этой статье, мы рассмотрели несколько методов того, как соединить провода между собой. Если вы знаете о других методах, то оставляйте комментарии в конце этой статьи.

    В предоставленном видеоматериале, вы сможете узнать о других тонкостях соединения алюминиевого провода:

    Источники: http://elektrik-l.ru/kak-soedinit-alyuminievyj-i-mednyj-provod/, http://220.guru/electroprovodka/provoda-kabeli/kak-soedinit-med-i-alyuminij.html, http://kakpravilnosdelat.ru/kak-soedinit-alyuminievye-provoda/

    Постоянный и переменный ток для чайников

    0

    Основы электротехники для начинающих

    Постоянный и переменный ток для чайников

    1. Понятия и свойства электрического тока
    2. Основные токовые величины
    3. Закон Ома
    4. Энергия и мощность в электротехнике
    5. Видео: Основы электротехники. Курс для начинающего электрика

    Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

    Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

    Понятия и свойства электрического тока

    Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеств ом. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

    Постоянный и переменный ток для чайников

    Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

    Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

    • Нагревание проводника, по которому протекает ток.
    • Изменение химического состава проводника под действием тока.
    • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

    Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором – периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

    Основные токовые величины

    При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется силой тока. измеряемой в амперах .

    Постоянный и переменный ток для чайников

    Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля. Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица – вольт. Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

    Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление. измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А.

    Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

    Постоянный и переменный ток для чайников

    Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

    1. Сила тока: I = U/R (ампер).
    2. Напряжение: U = I x R (вольт).
    3. Сопротивление: R = U/I (ом).

    Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

    Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

    Энергия и мощность в электротехнике

    В электротехнике существуют еще и такие понятия, как энергия и мощность. связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

    Постоянный и переменный ток для чайников

    Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P=IxU. единицей измерения служит ватт. Он означает перемещение одного ампера одним вольтом через сопротивление в один ом.

    Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

    Электрика для чайников: основы электроники

    Природа электрического тока

    Постоянный и переменный ток для чайников

    Движение электронов в проводнике

    Чтобы понимать что такое ток и откуда он берётся, нужно иметь немного знаний о строении атомов и законах их поведения. Атомы состоят из нейтронов (с нейтральным зарядом), протонов (положительный заряд) и электронов (отрицательный заряд).

    Электрический ток возникает в результате направленного перемещения протонов и электронов, а также ионов. Как можно направить движение этих частиц? Во время любой химической операции электроны «отрываются» и переходят от одного атома к другому.

    Те атомы, от которых «оторвался» электрон становятся положительно заряженным (анионы), а те к которым присоединился – отрицательно заряженными и называются катионами. В результате этих «перебеганий» электронов возникает электрический ток.

    Естественно, этот процесс не может продолжаться вечно, электрический ток исчезнет когда все атомы системы стабилизируются и будут иметь нейтральных заряд (отличный бытовой пример – обычная батарейка, которая «садится» в результате окончания химической реакции).

    История изучения

    Древние греки первыми заметили интересное явление: если потереть камень янтаря об шерстяную ткань, то он начинает притягивать мелкие предметы. Следующие шаги начали делать ученые и изобретатели эпохи ренессанса, которые построили несколько интересных устройств, демонстрировавших это явление.

    Новым этапом изучения электричества стали работы американца Бенджамина Франклина, в частности его опыты с Лейденовской банкой – первым в мире электроконденсатором.

    Именно Франклин ввёл понятия положительных и отрицательных зарядов, а также он придумал громоотвод. И наконец, изучение электротока стало точной наукой после описания закона Кулона.

    Основные закономерности и силы в электрическом токе

    Закон Ома – его формула описывает взаимосвязь силы, напряжения и сопротивления. Открыт в 19м веке немецким ученым Георгом Симоном Омом. Единица измерения электросопротивления названа в его честь. Его открытия были очень полезны непосредственно для практического использования.

    Закон Джоуля – Ленца говорит, что на любом участке электрической цепи совершается работа. В результате этой работы нагревается проводник. Такой тепловой эффект часто используется на практике в инженерии и технике (отличный пример – лампа накаливания).

    Постоянный и переменный ток для чайников

    Движение зарядов при этом совершается работа

    Эта закономерность получила такое название потому что сразу 2 ученых примерно одновременно и независимо, вывели её с помощью опытов
    закона электромагнитной индукции .

    В начале 19го века британский ученый Фарадей догадался, что изменяя количество линий индукции, которые пронизывают поверхность ограниченную замкнутым контуром, можно сделать индукционный ток. Посторонние силы, действующие на свободные частицы, называют электродвижущей силой (ЭДС индукции).

    Разновидности, характеристики и единицы измерения

    Электрический ток может быть или переменным. или постоянным .

    Постоянный электроток — это ток, который не меняет своё направление и знак во времени, однако он может менять свою величину. Постоянный электроток в качестве источника чаще всего использует гальванические элементы.

    Постоянный и переменный ток для чайников

    Переменным называется тот, который меняет направление и знак по закону косинуса. Его характеристикой является частота. Единицы измерения в системе СИ – Герцы (Гц).

    В последние десятилетия очень большое распространение получил трехфазный ток. Это вид переменного тока, который включает в себя 3 цепи. В этих цепях действует переменные ЭДС одинаковой частоты, но развернутые по фазе одна относительно другой на треть периода. Фазой называют каждую отдельную электроцепь.

    Постоянный и переменный ток для чайников
    Почти все современные генераторы производят трёхфазный электроток.

    • Сила и количество тока

    Сила тока зависит от величины заряда, протекающего в электроцепи за единицу времени. Сила тока это отношение электрозаряда, проходящего сквозь сечение проводника, ко времени его прохождения.

    В системе СИ единица измерения силы заряда – кулон (Кл), времени – секунда (с). В итоге получаем Кл/с, данную единицу называют Ампер (A). Измеряется сила электротока с помощью прибора – амперметра.

    Постоянный и переменный ток для чайников

    Напряжение — это соотношение работы к величине заряда. Работа измеряется в джоулях (Дж), заряд в кулонах. Данная единица называется Вольт (В).

    Показания амперметра на различных проводниках дают разные значения. А для того чтобы замерять мощность электроцепи пришлось бы использовать 3 прибора. Явление объясняется тем, что у каждого проводника различная проводимость. Единица измерения называется Ом и обозначается латинской буквой R. Сопротивление также зависит и от длины проводника.

    Два проводника, которые изолированы один от второго, могут накапливать электрические заряды. Данное явление характеризуется физ. величиной, которую называют электрической емкостью. Её единицей измерения – фарад (Ф).

    • Мощность и работа электрического тока

    Работа электротока на конкретном участке цепи равняется перемножению напряжения тока на силу и время. Напряжение меряют вольтами, силу амперами, время секундами. Единицей измерения работы приняли джоуль (Дж).

    Постоянный и переменный ток для чайников

    Мощность электротока – это отношение работы ко времени её совершения. Мощность обозначают буквой P и измеряют ваттами (Вт). Формула мощности очень простая: Сила тока умноженная на напряжение тока.

    Постоянный и переменный ток для чайников

    Существует также единица именуемая ватт-час. Её не следует путать с ваттами, это 2 разные физические величины. В ваттах измеряют мощность ( скорость потребления или передачи энергии), а в ватт-часах выражается энергия произведённая за конкретное время. Это измерение часто применяют в отношении бытовых электроприборов.

    Например, лампа мощность которой равняется 100 Вт работала в течении одного часа, то она потребила 100 Вт*ч, а лампочка мощность которой 40 ватт потребит столько же электроэнергии за 2.5 часа.

    Для того, чтобы замерять мощность электроцепи используют ваттметр

    Постоянный и переменный ток для чайников

    Какой вид тока эффективнее и какая между ними разница?

    Постоянный электроток легко использовать в случае параллельного подключения генераторов, для переменного необходима синхронизация генератора и энергосистемы.

    В истории произошло событие под названием «Война токов». Эта «война» произошла между двумя гениальными изобретателями – Томасом Эдисоном и Николой Теслой. Первый поддерживал и активно продвигал постоянный электроток, а второй переменный. «Война» закончилась победой Теслы в 2007 году, когда Нью-Йорк окончательно перешел на переменный.

    Разница в эффективности передачи энергии на расстоянии оказалось огромной в пользу переменного тока. Постоянный электроток невозможно использовать, если станция находятся далеко от потребителя.

    Но постоянный всё равно нашел сферу применения: он широко используется в электротехнике, гальванизации, некоторых видах сварки. Также постоянный электроток получил очень большое распространение в сфере городского транспорта (троллейбусы, трамваи, метро).

    Естественно, не бывает плохих или хороших токов, у каждого вида есть свои преимущества и недостатки, самое главное – правильно их использовать.

    Похожие статьи

    Постоянный и переменный ток для чайников Формула как найти мощность тока

    Электрический ток постоянный и переменный

    В самом начале, давайте дадим короткое определение электрическому току. Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Ток — это движение электронов в проводнике, напряжение — это то, что приводит их (электроны) в движение.

    Постоянный и переменный ток для чайников

    Теперь рассмотрим такие понятия, как постоянный и переменный ток и выявим их принципиальные отличия.

    Отличие постоянного тока от переменного

    Основная особенность постоянного напряжения в том, что оно постоянно как по своей величине, так и по знаку. Постоянный ток, "течет" в все время одну сторону. Например, по металлическим проводам от плюсового зажима источника напряжения к минусовому (в электролитах его создают положительные и отрицательные ионы). Сами же электроны движутся от минуса к плюсу, но ещё до открытия электрона договорились считать, что ток течет от плюса к минусу и до сих пор при расчетах придерживаются этого правила.

    Чем же от постоянного отличается переменный ток (напряжение)? Из самого названия следует, что он меняется. Но — как именно? Переменный ток меняет за период как свою величину, так и направление движения электронов. В наших бытовых розетках — это ток с синусоидальными (гармоническими) колебаниями частотой 50 герц (50 колебаний в секунду).

    Если рассмотреть замкнутую цепь на примере лампочки, то мы получим следующее:

    • при постоянном токе электроны будут течь через лампочку всегда в одном направлении от (-) минуса к (+) плюсу
    • при переменном направление движения электронов будет меняться в зависимости от частоты генератора. т. е. если в нашей сети частота переменного тока 50 герц (Hz), то направление движения электронов за 1 секунду поменяется 100 раз. Таким образом + и — в нашей розетке меняются местами сто раз в секунду (именно поэтому мы можем воткнуть электрическую вилку в розетку "вверх ногами" и все будет работать).

    Переменное напряжение в нашей бытовой розетке изменяется по синусоидальному закону. Что это значит? Напряжение от нуля увеличивается до положительного амплитудного значения (положительный максимум), потом уменьшается до нуля и продолжает уменьшаться дальше — до отрицательного амплитудного значения (отрицательный максимум), затем снова увеличивается, переходя через ноль и возвращается к положительному амплитудному значению.

    Говоря другими словами, при переменном токе постоянно меняется его заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Получается, что за секунду электроны 100 раз меняют направление своего движения и свою полярность, с положительной на отрицательную (помните, что их частота составляет 50 герц — 50 периодов или колебаний в секунду?).

    Постоянный и переменный ток для чайников

    Первые электрические сети были постоянного тока. С этим было связано несколько проблем, одна из них — сложность конструкции самого генератора. А генератор переменного тока обладает более простой конструкцией, а потому прост и дешев в эксплуатации.

    Дело в том, что одинаковую мощность можно передать высоким напряжением и маленьким током или наоборот: низким напряжением и большим током. Чем больше ток, тем больше нужно сечение провода, т.е. провод должен быть толще. Для напряжения толщина провода не важна, были бы изоляторы хорошие. Переменный ток (в отличие от постоянного) просто легче преобразовывать.

    И это — удобно. Так по проводу относительно небольшого сечения электростанция может отправить пятьсот тысяч (а иногда и до полутора миллионов) вольт энергии при токе в 100 ампер практически без потерь. Потом, например, трансформатор городской подстанции "заберет" 500 000 вольт при токе в 10 ампер и "отдаст" в городскую сеть 10 000 вольт при 500 амперах. А районные подстанции уже преобразуют это напряжение в 220/380 вольт при токе порядка 10 000 ампер, для нужд жилых и промышленных кварталов города.

    Разумеется схема упрощена и имеется в виду вся совокупность районных подстанций в городе, а не какая-то конкретно.

    Персональный компьютер (ПК) работает по схожему принципу, но — в обратную сторону. Он преобразует переменный ток в постоянный а затем, при помощи блока питания. понижает его напряжение до значений, необходимых для работы всех компонентов внутри корпуса компьютера .

    В конце 19-го века всемирная электрификация вполне могла пойти и другим путем. Томас Эдисон (считается, что именно он изобрел одну из первых коммерчески успешных ламп накаливания) активно продвигал свою идею постоянного тока. И если бы не исследования другого выдающегося человека, доказавшего эффективность тока переменного, то все могло бы быть по другому.

    Гениальный серб Никола Тесла (некоторое время работавший у Эдисона), первым спроектировал и построил генератор многофазного переменного тока, доказав его эффективность и преимущество по сравнению с аналогичными разработками, работавшими с постоянным источником энергии.

    Сейчас давайте рассмотрим "места обитания" постоянного и переменного тока. Постоянный, например, находится в нашем телефонном аккумуляторе или батарейках. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в местах его хранения (аккумуляторах).

    Источники постоянного напряжения это:

    1. обычные батарейки применяемые в различных приборах (фонарики, плееры, часы, тестеры и т.д.)
    2. различные аккумуляторы (щелочные, кислотные и т. п.)
    3. генераторы постоянного тока
    4. другие специальные устройства, например: выпрямители, преобразователи
    5. аварийные источники энергии (освещение)

    Например, городской электротранспорт работает на постоянном токе напряжением в 600 Вольт (трамваи, троллейбусы). Для метрополитена оно выше — 750-825 Вольт.

    Источники переменного напряжения:

    1. генераторы
    2. различные преобразователи (трансформаторы)
    3. бытовые электросети (домашние розетки)

    О том, как и чем измерять постоянное и переменное напряжение мы с Вами говорили вот в этой статье. а напоследок (всем тем кто дочитал статью до конца) хочу рассказать небольшую историю. Озвучил ее мне мой шеф, а я перескажу с его слов. Уж больно она к нашей сегодняшней теме подходит!

    Поехал он как-то в служебную командировку с нашими директорами в соседний город. Налаживать дружественные отношения с тамошними IT-шниками 🙂 А сразу возле трассы там такое замечательное местечко есть: родник с чистой водой. Возле все обязательно останавливаются и воду набирают. Это, своего рода, уже традиция.

    Местные власти, решив облагородить данное место, сделали все по последнему слову техники: вырыли сразу под родничком большую прямоугольную яму, обложили ее ярким кафелем, перелив сделали, подсветку светодиодную, бассейн получился. Дальше — больше! Сам родник "упаковали" в крапленую гранитную крошку, придали ему благородную форму, иконку над жерлом под стекло вмуровали — святое место, значится!

    И последний штрих — поставили систему подачи воды на фотоэлементе. Получается, что бассейн всегда наполнен и в нем "булькает", а чтобы набрать воду непосредственно из родничка, нужно поднести руки с сосудом к фотоэлементу и оттуда — "проистекает" 🙂

    Надо сказать, что по дороге к источнику наш шеф рассказывал одному из директоров, как это круто: новые технологии, вайфай, фотоэлементы, сканирование по сетчатке глаза и т.д. Директор был классическим технофобом, поэтому придерживался противоположного мнения. И вот, подъезжают они к родничку, подносят руки куда следует, а вода не течет!

    Они и так, и сяк, а результата — ноль! Оказалось, что тупо не было напряжения в электрической сети, которая питала эту шайтан-систему 🙂 Директор был "на коне"! Отпустил несколько "контрольных" фраз по поводу всех этих п. х технологий, таких же п. х элементов, всех машин вообще и данной конкретной в частности. Зачерпнул канистрой прямо из бассейна и пошел в машину!

    Вот и получается, мы можем настроить все что угодно, "поднять" навороченный сервер, предоставить лучший и востребованный сервис, но, все равно, самый главный человек — это дядя Вася-электрик в ватнике, который одним движением руки может организовать полный skipped всей этой технической мощи и изяществу 🙂

    Так что помните: главное — качественное электропитание. Хороший серверный UPS (источник бесперебойного питания) и стабильное напряжение в розетках, а все остальное — приложится 🙂

    На сегодня у нас — все и до следующих статей. Берегите себя! Ниже — небольшое видео по теме статьи.

    Источники: http://electric-220.ru/news/osnovy_ehlektrotekhniki_dlja_nachinajushhikh/2016-12-03-1133, http://infoelectrik.ru/nemnogo-osnov-elektrotehniki/priroda-elektricheskogo-toka.html, http://sebeadmin.ru/questions/elektricheskiy_tok_postoyanniy_i_peremenniy.html

    Как определить провод заземления

    0

    Как определить фазу ноль и землю

    ФАЗА, НОЛЬ, ЗАЗЕМЛЕНИЕ

    Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.

    В промышленных масштабах у нас производится трехфазный переменный ток. а в быту мы используем, как правило, однофазный. Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

    Как определить провод заземления

    Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля — N).

    Еще момент — чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

    Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой — фазовым.

    Отсюда следует еще один очевидный практический вывод: напряжение между нулем и землей будет близко к нулевому значению (определяется сопротивлением заземления), а земля — фаза. в нашем случае 220 Вольт.

    Кроме того, если гипотетически ( На практике так делать нельзя! ) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение фаза — ноль у нас будет те же 220 Вольт.

    Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

    Как определить провод заземления

    При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

    В описанной выше ситуации защиту от поражения электрическим током может также обеспечить устройство защитного отключения.

    При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и землей (рис.4). Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

    Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток уйдет по цепи заземления.

    Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

    Как это делается — тема для отдельного разговора, поскольку существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

    КАК ОПРЕДЕЛИТЬ ФАЗУ И НОЛЬ

    Где фаза, где ноль — вопрос, возникающий при подключении любого электротехнического устройства.

    Для начала давайте рассмотрим как найти фазу. Проще всего это сделать индикаторной отверткой (рисунок 7).

    Как определить провод заземления

    Токопроводящим жалом индикаторной отвертки (1) касаемся контролируемого участка электрической цепи (во время работы контакт этой части отвертки с телом недопустим!), пальцем руки касаемся контактной площадки 3, свечение индикатора 2 свидетельствует о наличии фазы.

    Помимо индикаторной отвертки фазу можно проверить мультиметром (тестером), правда это более трудоемко. Для этого мультиметр следует перевести в режим измерения переменного напряжения с пределом более 220 Вольт. Одним щупом мультиметра (каким — безразлично) касаемся участка измеряемой цепи, другим — естественного заземлителя (батареи отопления, металлические водопроводные трубы). При показаниях мультиметра, соответствующим напряжению сети (около 220 В) на измеряемом участке цепи присутствует фаза (схема рис.8).

    Как определить провод заземления

    Обращаю Ваше внимание — если проведенные измерения показывают отсутствие фазы утверждать что это ноль нельзя. Пример на рисунке 9.

    1. Сейчас в точке 1 фазы нет.
    2. При замыкании выключателя S она появляется.

    Поэтому следует проверить все возможные варианты.

    Хочу заметить, что при наличии в электропроводке провода заземления отличить его от нулевого проводника методом электрических измерений в пределах квартиры невозможно. Как правило, провод, которым выполнено заземление имеет желто зеленый цвет, но лучше убедиться в этом визуально, например снять крышку розетки и посмотреть какой провод подсоединен к заземляющим контактам.

    #160 #160 *#160 #160 *#160 #160 *

    Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

    Фаза, ноль, заземление

    Цветовая маркировка провода

    В этой статье мы рассмотрим как определить фазу#187 и зачем это нужно? Чем отличается ноль#187 от земли#187. Как правильно подключать их по цвету.

    Определить фазу можно одним из приборов, рассмотренных в одной из предыдущих статей. Также можно определить фазу самодельным прибором, рассмотренным в этой статье. А также можно определить прибором и попроще индикаторной отвёрткой, при прикосновении жала отвёртки к фазному#187 проводу в ней загорается огонёк, при этом вы должны прикасаться пальцем к металлическому пятачку индикатора (см. рисунок).

    Если проводку делали добросовестные и квалифицированные электрики, то ноль#187 подключен к проводу в синей изоляции, земля#187 к жёлто-зелёному проводу, а фаза к чёрному или к любому цветному (зависит от конкретного кабеля). Если вы делаете проводку заново, то придерживайтесь такой же цветовой маркировки.

    Ноль#187 от земли#187 отличить сложнее, индикатор тут не поможет, можно поступить следующим образом: Взять вольтметр и померить напряжение поочерёдно между фазой и одним и вторым оставшимся проводом. Где напряжение больше, там земля#187. Для подтверждения можно померить напряжение между землёй#187 и заведомо заземлённым устройством, например корпусом электрощита или батареей центрального отопления (краску придётся зачистить) вольтметр не должен ничего показать, а вот между нулём#187 и заземлённым устройством небольшое напряжение, но есть. Также можно прозвонить#187 омметром землю#187 (по нормам сопротивление не должно превышать 0,05 Ом), но предварительно убедитесь, что между измеряемыми точками нет напряжения, иначе можно спалить#187 прибор.

    Если у вас всего два провода, то земли#187 у вас нет. К сожалению этот защитный проводник раньше не прокладывали, поэтому он присутствует только в новых домах или если у вас была заменена проводка.

    Ноль#187 от земли#187 отличается тем, что при подключении нагрузки по нему течёт ток, такой же величины, как и по фазному#187 проводу, а земля#187 подсоединяется к корпусу электроприбора и служит для защиты человека от поражения электрическим током в случае поломки прибора. Ток по ней не течёт.

    А для чего определять фазу#187. При подключении электророзетки действительно не важно с какой стороны будет фаза, а вот для выключателя люстры важно, фаза#187 должна подаваться на выключатель, а ноль#187 напрямую к лампам люстры. В этом случае при замене лампы в люстре, при выключенном выключателе, человека не ударит током, даже если он случайно прикоснётся к токоведущим частям патрона люстры.

    P.S. Некоторые сайты предлагают определять фазу#187 сомнительными и совсем НЕбезопасными способами, надодобие контрольки#187. один провод которой надо подставить под струю воды, отковырять откуда-нибудь неоновую лампочку и тыкать ей в провода, или даже прикоснуться проводом с конденсатором(резистором) к батарее. Не делайте этого! Используйте только проверенные приборы, изготовленные на заводе и не прикасайтесь руками к оголённым проводам и металлическим щупам приборов. Здоровье дороже.

    Как сделать собственное заземление можно почитать в этой статье .

      Ваше имя Ваш email-адрес

    Как определить: фазу, ноль и землю

    Для двухжильной проводки:

    Как определить провод заземления

    Важно: При определении фазы в проводке дома либо квартиры необходимо будет подать напряжение на эту самую проводку. В связи с этим последующие работы и эксперименты становятся небезопасными для жизни. Поэтому 100 раз подумайте, нужно ли вам это, может лучше вызвать профессионального электрика, у которого имеется допуск. Жизнь значительно дороже тех денег, которые он с вас возьмет.

    Если вы отнеслись к моим предостережениям равнодушно, тогда идем дальше и по пунктам читаем, как из двух проводов определить, где фаза, а где ноль.

    1. Выключите из розеток все приборы.

    2. Обесточьте квартиру либо дом, напряжение вообще должно быть отключено.

    3. Оголите те два провода, с которыми собрались «выяснять отношения». Я не имею в виду, что нужно полностью снимать изоляцию с проводов, просто их кончики должны быть слегка оголенными и зачищенными, а так же находится на расстоянии друг от друга, чтобы они случайно не соприкоснулись, и не возникло КЗ.

    4. Снова подайте напряжение, в том числе и на нужные вам провода.

    5. Возьмите индикаторную отвертку. Если ее у вас нет, значит нужно купить. Стоит она очень смешных денег, как буханка хлеба. Поэтому не нужно искать другие методы и говорить, что: «у меня нет никакой отвертки, может лучше лампочкой».

    Как определить провод заземления

    6. Индикаторная отвертка должна находится в правой руке. Брать ее нужно только за диэлектрическую ручку. Дотроньтесь концом отвертки поочередно до каждого из проводов. При этом указательный палец правой руки нужно класть на кончик рукоятки, который должен быть металлическим.

    Как определить провод заземления

    Тот провод, на котором загорелся индикатор и есть фаза. а второй провод, естественно – это ноль .

    Вся эта инструкция очень хорошо подходит для двухжильной проводки, но провода может быть и 3, то есть ноль, фаза и земля.

    Для трёхжильной проводки:

    Как определить провод заземления

    Фазу в трехжильном проводе вы определите точно так же: индикатор будет гореть. На землю и ноль индикаторная отвертка реагировать не будет.

    Ноль и земля определяется в разных случаях по-разному. Некоторые определяют по цветам проводов: коричневый — фаза. синий/голубой — ноль. злёно-жёлтый/полосатый — земля. Однако в этом случае нужно полагаться на электриков, которые не должны были перепутать и использовать конкретный цвет для конкретного провода. Поэтому этот метод сразу отпадает.

    Как определить провод заземления

    Можно взять патрон с лампочкой и двумя проводами, один прикрутить к определенной вами индикатором фазе, а вторым коснуться поочередно двух оставшихся проводков: где загорится – тот провод и ноль. Однако лампочка может загореться и при соприкосновении с землей. Можно померить поочередно напряжение при помощи вольтметра. В паре фаза-ноль напряжение должно быть больше, чем в паре фаза-земля.

    Советы, как узнать 0 и землю:

    1. Залезть в щит и отключить защитное зануление. На оставшейся паре проводов нагрузка (лампа) будет работать. Это если вы точно знаете, где земля в щитке.

    2. Замкнуть фазу на один из оставшихся проводов. Если пробки выбьет, то ноль. Если нет, то земля. При условии, что у вас есть пробки, и вы не боитесь, что вся проводка сгорит. И это довольно опасно.

    3. Есть индикаторные отвёртки специальные с батарейкой, ИЭК тот же продаёт (такие жёлтые), таким землю от нуля отличать удобно. Выявляем неонкой фазу, вырубаем пакетник/вводной автомат (работает это понятно только если он двухполюсный), тыкаем оставшиеся концы, который светится — земля, который не светится — ноль.

    4. Вольтметром переменного тока померять напряжение между неопределенным проводом и батареей теплоснабжения (отковырнуть краску и касаться металла). У заземляющего провода потенциал будет ноль, у нулевого провода, за счет перекоса фаз (разных нагрузок по фазам) потенциал может быть от нуля до 20-30 вольт.

    5. Если у Вас трех проводная сеть то тогда должно быть УЗО, далее определяете фазный провод, предварительно отключив всю нагрузку (т.е. нигде не должна замыкаться на устройствах). После определения фазы и подключения к ней (например, лампы накаливания), второй провод соединяете с любым из оставшихся, проводов (все подключения делайте со снятием напряжения), включите УЗО, затем включите вводной автоматический выключатель, если УЗО не отключится то второй провод и является нулевым, а если произойдет отключение УЗО, то это защитное заземление.

    © Энциклопедия Технологий и Методик Патлах В.В. 1993-2007 гг.

    Источники: http://eltechbook.ru/zakon_faza.html, http://elektricvdome.ru/faza-nol-zazemlenie/, http://patlah.ru/etm/etm-09/radio%20novicok/faza_nol_zemla/faza_nol_zemla.htm

    Комментариев пока нет!

    Правила определения фазы, нуля и заземления в сети

    Последовательность действий зависит от того, какая система проводки смонтирована в помещении. Рассмотрим правила определения фазного и нулевого провода в разных случаях.

    Двухпроводная сеть

    Этот вариант электропроводки встречается в старых домах. По современной терминологии данная система обозначается TN-C. Суть ее заключается в том, что нулевой рабочий провод, заземленный на питающей подстанции, совмещает роль защитного заземляющего (PEN). В системе IT также присутствует только фазный и рабочий нулевой проводник, но в обычных жилых и производственных помещениях она не применяется. В двухпроводной сети отдельный заземляющий провод просто отсутствует, то есть, имеется только фаза и ноль. Определить их очень просто: прикасаемся индикатором последовательно к каждой из токоведущих жил, фаза вызывает зажигание индикаторной лампы, как показано на фото ниже:

    Как определить провод заземления

    Система является устаревшей. На вилке любого современного электроприбора имеется три клеммы. Проводка должна выполняться трехпроводной, исключение — группа освещения.

    Трехпроводная сеть

    В этом варианте, в дом или квартиру заходит три провода. Такие сети имеют несколько разновидностей. В системе TN-S рабочий ноль и защитное заземление раздельно идут от питающей подстанции, где оба соединены с рабочим заземлением. При таком типе проводки, определение назначения проводов можно осуществить следующим образом:

    • в щитке или в распределительной коробке индикатором определить провод, на котором присутствует фаза;
    • два оставшихся – это рабочий и защитный ноль (земля), отсоединяем на щитке один провод из них;
    • если отсоединить рабочий ноль, все электрооборудование в квартире перестанет работать, значит, оставшийся проводник – это земля, или защитное заземление.

    Теперь остается определить в розетке среди трех проводов, на котором из них фаза, ноль и земля. Если не удается найти по цвету изоляции, определение их функций может быть выполнено подручными средствами, без приборов. Для этого нужно взять патрон с вкрученной лампой и выведенными наружу проводами. Определение проводим следующим образом. Одним проводником от патрона прикасаемся к фазному проводу (фаза уже найдена с помощью индикатора), вторым поочередно прикасаемся к двум оставшимся. Если на щитке отключен рабочий ноль, лампа зажжется только при соединении с защитным заземлением, и наоборот.

    Как определить провод заземления

    На видео ниже наглядно показывается, как определить фазу, ноль и землю индикаторной отверткой:

    Другой разновидностью системы TN является разводка TN-C-S. В этом случае нулевой провод расщепляется на рабочий ноль и защитное заземление на вводе в дом. Здесь, чтобы определить назначение проводников, можно применить последовательность действий, описанную для системы TN-S. Добавляется дополнительная возможность, обследовав место разделения PEN, определить, где рабочий и защитный ноль (земля) по сечению жилы в проводе.

    В случае, если заземление выполнено по системе TT. объект (частный дом) имеет собственное заземляющее устройство, от которого выполнена разводка защитного заземления. В этих условиях, как правило, определить фазу, ноль и землю можно путем отслеживания заземляющего проводника по трассе его прокладки.

    Определение мультиметром или тестером

    Начнем с того, что определить фазу лучше всего с помощью отвертки, совмещенной с индикатором. Будем исходить из того, что если в хозяйстве есть мультиметр, индикатор найдется наверняка. В крайнем случае, можно сделать следующее. В некоторых случаях может помочь определение с помощью мультиметра напряжения между проводом и трубой отопления или водоснабжения. К сожалению, результат здесь не всегда предсказуем. Чаще всего, напряжение между фазой и системой отопления близко к 220 В, во всяком случае, оно должно быть выше, чем между тем же отоплением и нулем. Картина может измениться, например, если вороватый сосед использует трубы отопления как рабочее заземление.

    Как определить провод заземления

    В трехпроводных схемах мультиметр покажет рабочее напряжение между проводником, на который подана фаза и любым из двух других. Определение, какой ноль рабочий, а какой – земля, можно проводить по методике, изложенной выше, то есть, отсоединив на щитке один из приходящих нулей и воспользовавшись контрольной лампой.

    О чем еще важно знать?

    Иногда определение назначения токоведущих жил может быть облегчено благодаря знанию их общепринятой цветовой маркировки:

    • Ноль может маркироваться латинской буквой N. Общепринятый цвет изоляции – голубой или синий. Другой вариант окраски изоляции – белая полоса на синем фоне.
    • Земля маркируется латиницей PE. В системе заземления, объединяющей функции защитного и рабочего нуля, обозначается PEN. Цвет применяемой изоляции – желтый, имеющий одну или две полосы ярко – зеленого оттенка.
    • Фаза может обозначаться латинской буквой L или маркироваться как фаза трехфазной электрической сети, то есть A, B или C. Цвет изоляции может быть произвольный, но не повторяющий тех, которыми обозначается земля (защитное заземление) или нулевой проводник. В большинстве случаев, это красный, коричневый или черный цвет.

    Полезно знать и правила монтажа электропроводки. Это также может помочь определить, где фаза, ноль и земля. Фаза всегда должна приходить в распределительный щиток на автоматический выключатель или плавкий предохранитель. Нулевая жила может крепиться на шине специальной конструкции, которая имеет несколько клемм. В металлических щитках и клеммных ящиках старого типа, ноль или земля крепились под гайку болтом, приваренным к корпусу ящика. Эти правила могут облегчить определение функций приходящих проводников. Узнать больше о том, как определить фазу и ноль без приборов. вы можете из нашей отдельной статьи.

    Теперь вы знаете, как определить фазу, ноль и землю мультиметром или же индикаторной отверткой. Надеемся, предоставленные рекомендации помогли вам решить вопрос самостоятельно!

    Наверняка вы не знаете:

    НравитсяКак определить провод заземления( 0 ) Не нравитсяКак определить провод заземления( 0 )

    Как определить провод заземления

    Для разводки электропроводки и установки ряда электрических устройств требуется обеспечить защиту оборудования и жизни потребителей. С этими целями к сети подключается провод заземления.

    Назначение

    Согласно требованиям ПУЭ и ГОСТ 18714-81 в жилом и промышленном помещении требуется обязательно выполнять монтаж системы защитного заземления, а также составить акт про его наличие. Принцип работы заземления можно объяснить на примере повреждения фазового кабеля и появления, так называемого, тока утечки. В большинстве случаев, проводка в квартире защищена при помощи устройства отключения тока или УЗО. Но УЗО срабатывает только при наличии дифференциального тока (который проявляется не всегда и не сразу при повреждениях проводки).

    Как определить провод заземления

    Фото — принцип работы и ошибки

    Дифференциальный ток проявляется только в тех случаях, если устройство или проводник соединен с некой точкой, у которой другой потенциал. Сила сопротивления земли очень высока и благодаря этому происходит срабатывание УЗО. При этом нельзя утверждать, что установка УЗО является необходимостью. Если защитное устройство не будет подключено к проводке, то ток просто будет поступать на заземленные незащищенные отводы электроустановок, которые будут находиться под высоким напряжением. Это не критичная ситуация, но очень опасная для жизни обывателя – прикоснувшись к такому отводу, Вы можете получить удар током.

    Маркировка

    Обозначение провода заземления выполняется при помощи:

    Рассмотрим, какого цвета провод заземления. В трехжильном проводе заземление, согласно правилам ПУЭ, обозначается буквами РЕ без предоставления отдельной информации про сечение, его цвет – желто-зеленый (в вилке – желтый). Аналогично производится маркировка кабеля, состоящего из четырех и более жил. У некоторых импортных моделей обозначение может производиться только одним цветом – желтым или зеленым. Обращаем также внимание на то, что зачастую толщина заземляющего отвода может быть меньше, чем у фазного – это еще одна особенность нуля и земли.

    Как определить провод заземления

    Фото — маркировка

    В определенных случаях многожильный провод имеет ограниченное место с видимой изоляцией. Тогда допускается ограниченное маркирование электрического кабеля. Минимальное расстояние от открытого провода до изоляции 15 мм.

    Иногда, если в однофазной сети земля не установлена, то можно использовать в качестве защиты медный провод для заземления без изоляции. Но тогда купите медный электрод с сечением от 25 мм. Теоретически такая система может сработать, но при возможности лучше все же использовать специальные проводники.

    Также кабель обозначается буквенным и цифирным сочетанием. Как мы говорили выше, на проводе должна стоять пометка «РЕ», помимо этого также может присутствовать значение сечения, длины, марка и т. д.

    Видео: зануление и заземление

    Подключение

    Установка нулевого провода и заземления необходима при подключении любого электротехнического оборудования. Если Вы работаете в квартире, то нужно определить провод заземления в щитке, если же монтаж производится в частном доме, то предварительно обустраивается контур заземления. Рассмотрим оба варианта.

    Как определить провод заземления

    Фото — розетка и земля

    Практически в каждой современной розетке, люстре и других отводах имеет специальная клемма заземления, к которой и нужно подвести защитный кабель. В квартирах осуществляется подключение по системе TN-C. В ней соединение контура заземления производится за счет имеющихся трубопроводов. Здесь к стоякам подводится несколько проводов: фаза, нуль и земля. В домах новой постройки используется система TN-S. Как их отличить:

    1. Тип TN-C подключается четырехжильными проводниками;
    2. В TN-S – пятижильными.

    Инструкция, как сделать землю в сеть TN- S:

    1. Соединение фазного кабеля производится, соответственно, к фазе;
    2. Провод нуля сопрягается с нулевой шиной. Для этого нужно использовать специальный зажим. Обратите внимание, нельзя вместе подключать провода земли и нуля;
    3. Узел защитного кабеля подводится к стенке щитка – именно он выступает точкой с отличающимся потенциалом.

    Как определить провод заземления

    Фото — принцип установки

    Для того чтобы подключить TN-C, есть несколько вариантов. Если Вы живете на нижних этажах многоквартирного дома, то можно сделать свой контур – просто вбить и сварить между собой металлические колышки и на них вывести заземление. Если на высших, то можно от подвала (или опять-таки, самодельного контура) протянуть землю к проводке квартиры. Для этого можно выбрать одножильный провод, к примеру, гибкий СИП, ГПП или плоский для заземления ПВ 3.

    Как определить провод заземления

    Еще в квартирах устраивают землю при помощи металлических сетчатых лотков. Но, здесь предварительно должен проводиться расчет сопротивления. Измерение и проверка имеющихся параметров осуществляется мультиметром.

    Иногда для подключения защитных систем мастера обустраивают соединения с батареями, трубами газопровода или трубами в квартире. Это очень опасная схема, т. к. при появлении утечки тока под напряжением окажется не только Ваша квартира, но и соседские.

    Как определить провод заземления

    Фото — переносной контур

    Для схемы зануления используется повторная или двойная земля. Этот способ описан на фото ниже, там же приведена схема. Обратите внимание, что повторное заземление нулевого кабеля производится через каждые 200 метров.

    Как определить провод заземления

    Чтобы проводить заземление в частном доме необходимо организовать контур. Он представлен в форме равнобедренного треугольника. По периметру забиваются металлические колышки, расположенные друг от друга на равном расстоянии. Они соединяются между собой арматурой, которая приваривается к ним. К полученному замкнутому контуру подключается наконечник кабеля из дома.

    Как определить провод заземления

    Фото — организация земли

    Похоже выглядит схема переносного заземления. Она используется для защиты дачи или профессиональными электриками, если нужно провести испытания и снять замеры с высоковольтных воздушных проводов.

    Как определить провод заземления

    Фото — Комплект

    Купить комплект проводов заземления для шкафа КПЗ-М, ШРН и контейнер ССД КПЗ-М можно в любом электротехническом магазине, их цена зависит от типа и области использования. Там же Вы найдете специальные хомуты, электрод анодного заземления и прочие необходимые устройства и элементы схемы. Предварительно обязательно проверяйте сертификат качеств и соответствия необходимым нормам.

    Источники: http://restart24.ru/kak/kak-opredelit-fazu-nol-i-zemlju.html, http://samelectrik.ru/pravila-opredeleniya-fazy-nulya-i-zazemleniya-v-seti.html, http://www.asutpp.ru/kabel-i-provod/provod-zazemleniya.html

    Параллельное и последовательное соединение конденсаторов

    0

    Параллельное и последовательное соединение конденсаторов

    Отдельные конденсаторы могут быть соединены друг с другом различным образом. При этом во всех случаях можно найти емкость некоторого равнозначного конденсатора, который может заменить ряд соединенных между собой конденсаторов.

    Для равнозначного конденсатора выполняется условие: если подводимое к обкладкам равнозначного конденсатора напряжение равно напряжению, подводимому к крайним зажимам группы конденсаторов, то равнозначный конденсатор накопит такой же заряд, как и группа конденсаторов.

    Параллельное соединение конденсаторов

    На рис. 1 изображено параллельное соединение нескольких конденсаторов. В этом случае напряжения, подводимые к отдельным конденсаторам, одинаковы: U1 = U2 = U3 = U. Заряды на обкладках отдельных конденсаторов: Q1 = C1U. Q 2 = C 2 U. Q 3 = C 3 U. а заряд, полученный от источника Q = Q1 + Q2 + Q3.

    Параллельное и последовательное соединение конденсаторов

    Рис. 1. Схема параллельного соединения конденсаторов

    Общая емкость равнозначного (эквивалентного) конденсатора:

    C = Q / U = (Q1 + Q2 + Q3) / U = C1 + C2 + C3.

    т. е. при параллельном соединении конденсаторов общая емкость равна сумме емкостей отдельных конденсаторов.

    Параллельное и последовательное соединение конденсаторов

    Рис. 2. Способы соединения конденсаторов

    Последовательное соединение конденсаторов

    При последовательном соединении конденсаторов (рис. 3) на обкладках отдельных конденсаторов электрические заряды по величине равны: Q1 = Q2 = Q3 = Q

    Действительно, от источника питания заряды поступают лишь на внешние обкладки цепи конденсаторов, а на соединенных между собой внутренних обкладках смежных конденсаторов происходит лишь перенос такого же по величине заряда с одной обкладки на другую (наблюдается электростатическая индукция), поэтому и на них по- являются равные и разноименые электрические заряды.

    Параллельное и последовательное соединение конденсаторов

    Рис. 3. Схема последовательного соединения конденсаторов

    Напряжения между обкладками отдельных конденсаторов при их последовательном соединении зависят от емкостей отдельных конденсаторов: U1 = Q/C1. U1 = Q/C 2, U1 = Q/C 3, а общее напряжение U = U1 + U2 + U3

    Общая емкость равнозначного (эквивалентного) конденсатора C = Q / U = Q / ( U1 + U2 + U3 ), т. е. при последовательном соединении конденсаторов величина, обратная общей емкости, равна сумме обратных величин емкостей отдельных конденсаторов.

    Формулы эквивалентных емкостей аналогичны формулам эквивалентных проводимостей.

    Параллельное и последовательное соединение конденсаторов

    Пример 1. Три конденсатора, емкости которых C1 = 20 мкф, С2 = 25 мкф и С3 = 30 мкф, соединяются последовательно, необходимо определить общую емкость.

    Общая емкость определяется из выражения 1/С = 1/С1 + 1/С2 + 1/С3 = 1/20 + 1/25 + 1/30 = 37/300, откуда С ≈ 8,11 мкф.

    Пример 2. 100 конденсаторов емкостью каждый 2 мкф соединены параллельно. Определить общую емкость. Общая емкость С = 100 Ск = 200 мкф.

    Статьи и схемы

    Полезное для электрика

    Соединение конденсаторов

    Параллельное и последовательное соединение конденсаторов

    1. Последовательное соединение
    2. Смешанное соединение
    3. Параллельное соединение
    4. Видео

    В электронных и радиотехнических схемах широкое распространение получило параллельное и последовательное соединение конденсаторов. В первом случае соединение осуществляется без каких-либо общих узлов, а во втором варианте все элементы объединяются в два узла и не связаны с другими узлами, если это заранее не предусмотрено схемой.

    Последовательное соединение

    При последовательном соединении два и более конденсаторов соединяются в общую цепь таким образом, что каждый предыдущий конденсатор соединяется с последующим лишь в одной общей точке. Ток (i), осуществляющий зарядку последовательной цепи конденсаторов будет иметь одинаковое значение для каждого элемента, поскольку он проходит только по единственно возможному пути. Это положение подтверждается формулой: i = ic1 = ic2 = ic3 = ic4 .

    Параллельное и последовательное соединение конденсаторов

    В связи с одинаковым значением тока, протекающего через конденсаторы с последовательным соединением, величина заряда, накопленного каждым из них, будет одинаковой, независимо от емкости. Такое становится возможным, поскольку заряд, приходящий с обкладки предыдущего конденсатора, накапливается на обкладке последующего элемента цепи. Поэтому величина заряда у последовательно соединенных конденсаторов будет выглядеть следующим образом: Qобщ = Q1 = Q2 = Q3 .

    Если рассмотреть три конденсатора С1. С2 и С3. соединенные в последовательную цепь, то выясняется, что средний конденсатор С2 при постоянном токе оказывается электрически изолированным от общей цепи. В конечном итоге величина эффективной площади обкладок будет уменьшена до площади обкладок конденсатора с самыми минимальными размерами. Полное заполнение обкладок электрическим зарядом, делает невозможным дальнейшее прохождение по нему тока. В результате, движение тока прекращается во всей цепи, соответственно прекращается и зарядка всех остальных конденсаторов.

    Общее расстояние между обкладками при последовательном соединении представляет собой сумму расстояний между обкладками каждого элемента. В результате соединения в последовательную цепь, формируется единый большой конденсатор, площадь обкладок которого соответствует обкладкам элемента с минимальной емкостью. Расстояние между обкладками оказывается равным сумме всех расстояний, имеющихся в цепи.

    Параллельное и последовательное соединение конденсаторов

    Падение напряжения на каждый конденсатор будет разным, в зависимости от емкости. Данное положение определяется формулой: С = Q/V, в которой емкость обратно пропорциональна напряжению. Таким образом, с уменьшением емкости конденсатора на него падает более высокое напряжение. Суммарная емкость всех конденсаторов вычисляется по формуле: 1/Cобщ = 1/C1 + 1/C2 + 1/C3 .

    Главная особенность такой схемы заключается в прохождении электрической энергии только в одном направлении. Поэтому в каждом конденсаторе значение тока будет одинаковым. Каждый накопитель в последовательной цепи накапливает равное количество энергии, независимо от емкости. То есть емкость может воспроизводиться за счет энергии, присутствующей в соседнем накопителе.

    Смешанное соединение

    Параллельное и последовательное соединение конденсаторов

    Параллельное соединение конденсаторов

    Параллельным считается такое соединение, при котором конденсаторы соединяются между собой двумя контактами. Таким образом в одной точке может соединяться сразу несколько элементов.

    Параллельное и последовательное соединение конденсаторов

    Данный вид соединения позволяет сформировать единый конденсатор с большими размерами, площадь обкладок которого будет равна сумме площадей обкладок каждого, отдельно взятого конденсатора. В связи с тем, что емкость конденсаторов находится в прямой пропорциональной зависимости с площадью обкладок, общая емкость составить суммарное количество всех емкостей конденсаторов, соединенных параллельно. То есть, Собщ = С1 + С2 + С3 .

    Поскольку разность потенциалов возникает лишь в двух точках, то на все конденсаторы, соединенные параллельно, будет падать одинаковое напряжение. Сила тока в каждом из них будет отличаться, в зависимости от емкости и значения напряжения. Таким образом, последовательное и параллельное соединение, применяемое в различных схемах, позволяет выполнять регулировку различных параметров на тех или иных участках. За счет этого получаются необходимые результаты работы всей системы в целом.

    Схемы соединения конденсаторов: параллельное, последовательное

    Конденсаторы, как и резисторы, можно соединять последовательно и параллельно. Рассмотрим соединение конденсаторов: для чего применяются каждая из схем, и их итоговые характеристики.

    Параллельное соединение конденсаторов

    Параллельное и последовательное соединение конденсаторов

    Параллельное соединение конденсаторов

    Эта схема – самая распространенная. В ней обкладки конденсаторов соединяются между собой, образуя эквивалентную емкость, равную сумме соединяемых емкостей.

    Параллельное и последовательное соединение конденсаторов

    При параллельном соединении электролитических конденсаторов необходимо, чтобы между собой соединялись выводы одной полярности.

    Особенность такого соединения – одинаковое напряжение на всех соединяемых конденсаторах. Номинальное напряжение группы параллельно соединенных конденсаторов равно рабочему напряжению конденсатора группы, у которого оно минимально.

    Токи через конденсаторы группы протекают разные: через конденсатор с большей емкостью потечет больший ток.

    На практике параллельное соединение применяется для получения емкости нужной величины, когда она выходит за границы диапазона, выпускаемого промышленностью, или не укладываются в стандартный ряд емкостей. В системах регулирования коэффициента мощности (cos ϕ) изменение емкости происходит за счет автоматического подключения или отключения конденсаторов в параллель.

    Последовательное соединение конденсаторов

    Параллельное и последовательное соединение конденсаторов

    Последовательное соединение конденсаторов

    При последовательном соединении обкладки конденсатором соединяются друг к другу, образуя цепочку. Крайние обкладки подключаются к источнику, а ток по всем конденсаторам группы потечет одинаковый.

    Эквивалентная емкость последовательно соединенных конденсаторов ограничена самой маленькой емкостью в группе. Объясняется это тем, что как только она полностью зарядится, ток прекратится. Подсчитать общую емкость двух последовательно соединенных конденсаторов можно по формуле

    Параллельное и последовательное соединение конденсаторов

    Параллельное и последовательное соединение конденсаторов

    Но применение последовательного соединения для получения нестандартных номиналов емкостей не так распространено, как параллельного.

    При последовательном соединении напряжение источника питания распределяется между конденсаторами группы. Это позволяет получить батарею конденсаторов, рассчитанную на большее напряжение. чем номинальное напряжение входящих в нее компонентов. Так из дешевых и небольших по размерам конденсаторов изготавливаются блоки, выдерживающие высокие напряжения.

    Еще одна область применения последовательного соединения конденсаторов связана с перераспределением напряжений между ними. Если емкости одинаковы, напряжение делится пополам, если нет – на конденсаторе большей емкости напряжение получается большим. Устройство, работающее на этом принципе, называют емкостным делителем напряжения .

    Смешанное соединение конденсаторов

    Параллельное и последовательное соединение конденсаторов

    Пример смешанного соединения конденсаторов

    Такие схемы существуют, но в устройствах специального назначения, требующие высокой точности получения величины емкости, а также для их точной настройки.

    Оцените качество статьи. Нам важно ваше мнение:

    Источники: http://electricalschool.info/spravochnik/electroteh/618-parallelnoe-i-posledovatelnoe.html, http://electric-220.ru/news/soedinenie_kondensatorov/2016-12-20-1143, http://electric-tolk.ru/sposoby-soedineniya-kondensatorov/

    Люминесцентная лампа моргает но не загорается

    0

    Причины мигания люминесцентной лампы

    Сегодня в быту используется достаточно много видов лампочек: лампы накаливания, светодиодные, ртутные, газоразрядные, галогенные и люминесцентные лампочки. Они различаются между собой принципом работы, цветом и интенсивностью свечения, эксплуатационными характеристиками, а также безопасностью и энергосберегающим показателями. В зависимости от типа лампы имеют разные виды неисправностей. Например, одной из самых распространенных неполадок люминесцентной конструкции является мигание, о причинах и устранении которого и пойдет речь далее.

    Как исправить

    Люминесцентная лампа моргает но не загорается

    Для того чтобы устранить моргание лампочки необходимо разобраться в том как она работает. Свет люминесцентная лампа излучает благодаря невидимому разряду между двумя электродами, который возникает в среде заполненной парами ртути и инертным газом и проходит через покрытые люминофором стенки, излучая свет. Стоит отметить, что люминесцентная лампочка зажигается при большем напряжении чем то, что необходимо для поддержания ее работы. Уменьшение напряжения и позволяет значительно экономить электрическую энергию.

    Люминесцентная лампа моргает но не загорается

    Чтобы установить причину мигания лампы нужно разобраться, как и при каких условиях она моргает. Люминесцентная лампа может мигать постоянно, начиная с включения, по истечении некоторого времени после включения, а также непосредственно после выключения. Кроме того лампочка может моргать время от времени вне зависимости от того включена она или выключена.

    Причины того, что люминесцентная лампочка моргает и их устранение

    Мигание после включения

    Причин мигания лампочки после включения может быть несколько. Прежде всего, это низкое напряжение сети, которое не дает конструкции зажечься. В этом случае необходимо проверить напряжение и в случае его сильного отклонения обратиться к соответственному мастеру. Стоит отметить, что при постоянных отклонениях напряжения сети срок службы любых ламп сокращается примерно на пятую часть.

    Люминесцентная лампа моргает но не загорается

    Следующей причиной моргания люминесцентной конструкции может быть неисправность схемы запуска самой лампочки. В таком случае с ней уже ничего не сделаешь, и остается лишь поменять лампочку на новую. Последней причиной того, что лампочка моргает, являются постоянные скачки напряжения. В этом может быть виноват как поставщик электрической энергии, так и другие жители дома, которые включают в сеть мощную аппаратуру.

    Моргает некоторое время после включения

    Если лампочка мигает первые секунды после включения и только потом загорается, то это свидетельствует о выходе из строя стартера, который необходимо просто заменить.

    Моргает после выключения

    Люминесцентная лампа моргает но не загорается

    Причин мигания люминесцентной конструкции после выключения, как и в первом варианте, может быть несколько. Самой распространенной является моргание вследствие использования лампочки вместе и выключателем с подсветкой. Энергия, которая используется для питания подсветки, провоцирует разжигание лампочки, но ее недостаточно для ее запуска, поэтому конструкция мигает лишь некоторое время. Чтобы исправить это, необходимо просто заменить выключатель новым без подсветки.

    Электромагнитные волны

    Люминесцентная лампа моргает но не загорается

    Еще одной причиной моргания лампочки могут стать проходящие поблизости мощные электромагнитные волны. Например, такого же эффекта можно добиться, просто поднеся конструкцию к включенному телевизору. Источниками мощных электромагнитных волн могут быть радиостанции, находящиеся поблизости линии электропередач, а также вышки мобильных операторов и другие подобные сооружения. Моргать лампочка может и в случае неисправности электрической проводке в доме или квартире. Это случается если проводка очень старая или влажность в помещении слишком высокая. В этом случае лучше всего обратиться к специалисту.

    Люминесцентная лампа моргает но не загорается

    Дерево – материал на редкость благодарный. Достаточно прочный, чтобы быть долговечным, достаточно твердый, чтобы удерживать даже очень тонкую форму, достаточно.

  • Люминесцентная лампа моргает но не загорается

    Керамбит – весьма специфическое оружие ближнего боя, ставшее внезапно популярным благодаря игре Call of Duty: Black Ops, а также многочисленным.

  • 4 сентября 2008 г. в 09:32

    Порядок действий при неисправности люминесцентных ламп

    При эксплуатации таких ламп могут появиться неисправности в схеме включения вспомогательной аппаратуры — стартера и дросселя. Если в данной схеме лампа не зажигается, необходимо проверить исправность электросети, а также отдельных элементов схемы включения лампы.

    Нормальная эксплуатация лампы существенно зависит от внешних условий — от напряжения питающей сети и от температуры окружающего воздуха.

    При исправности электросети и всех элементов схемы включенная лампа все же может не зажигаться, если температура окружающей среды меньше +10° С и если колебание напряжения питающей сети превосходит 6–7%. Зажигание лампы происходит обычно не сразу, а после нескольких срабатываний стартера. Полная длительность зажигания не должна превосходить 15 с. Если в течение этого времени лампа не загорится, то возможны неисправности, которые могут быть как в самой лампе, так и в отдельных элементах схемы включения.

    Причинами могут быть неисправности:

    • в электросети — наличие обрыва или плохого контакта
    • стартера — не замыкает цепь накала электродов лампы
    • дросселя — обрыв в обмотке дросселя
    • патронов — отсутствие контактов
    • лампы — обрыв электродов лампы

    Проверка и устранение указанных неисправностей производятся в следующем порядке:

    • проверить наличие напряжения на контактах патронов лампы и стартера
    • заменить лампу. Если новая лампа зажигается, то замененная лампа была неисправной

    При включении лампы свечение люминофора, обуславливаемое возникновением вспомогательного разряда, имеется только в одном конце лампы. Лампа мигает, но не зажигается. Причинами этой неисправности могут быть замыкания в проводке, в патроне, в выходах лампы, где свечение люминофора отсутствует.

    Устранение неисправности проводится в следующем порядке:

    • Лампу переставить так, чтобы неисправный и нормально светящиеся концы ее поменялись местами. Если при такой перестановке свечение будет отсутствовать, данная лампа является дефектной и должна быть заменена новой.
    • Если при замене лампы нет свечения, необходимо проверить схему включения и патрон лампы, устранить их замыкания, в случае необходимости патрон сменить.

    Свечение на концах лампы имеется и сохраняется длительное время, но лампа не зажигается. Причину нужно искать в неисправности стартера, патрона или проводки. Если стартер вынуть и свечение исчезнет, значит, данный стартер подлежит замене. Если и при отсутствии стартера на концах лампы будет свечение, необходимо проверить проводку, патрон стартера и устранить имеющиеся в них замыкания.

    На концах включенной лампы появляется и исчезает тусклое оранжевое свечение, лампа не зажигается и через некоторое время свечение вообще исчезает. Такая лампа должна быть заменена, так как в нее попал воздух.

    Если лампа зажигается нормально, но уже в первые часы горения наблюдается сильное потемнение ее концов и через некоторое время она перестает зажигаться, то неисправен дроссель, т.к. пусковой и рабочий токи имеют значения, не соответствующие вольтамперной характеристике.

    Для этого надо проверить значение пускового и рабочего токов. В отдельных случаях преждевременное потемнение концов лампы может быть вызвано плохим качеством ее катодов.

    Если лампа зажигается нормально, но при горении разряд не заполняет равномерно все пространство между электродами и на отдельных участках извивается в виде змейки, то неисправен дроссель — ток лампы слишком велик. Необходимо проверить значение пускового и рабочего токов лампы, и, если они выходят за пределы, указанные в вольтамперной характеристике, дроссель должен быть заменен новым. Если значение токов не выходит за пределы, то в отдельных случаях может быть неисправна сама лампа — ее катоды обработаны недостаточно хорошо. Лампу следует несколько раз погасить и зажечь, повернуть ее в патронах вокруг собственной оси на 120° и еще раз зажечь и погасить. Если и после этого разряд не заполнит все пространство между электродами, лампу нужно заменить.

    Если лампа периодически зажигается и гаснет, то неисправна лампа и стартер. Лампа неисправна, т.к. падение напряжения на лампе во время ее горения превышает напряжение зажигания разряда в стартере. Необходимо проверить падение напряжения в лампе. Если оно превышает значения, указанные в таблице, то данная лампа должна быть заменена новой. Если напряжение зажигания разряда в стартере ниже минимально допустимого значения, значит неисправен стартер.

    Лампа зажигается нормально, но горит очень тускло, световой поток, излучаемый лампой, недостаточен. Это объясняется тем, что дроссель не обеспечивает надлежащего режима работы лампы. Если рабочий ток лампы меньше, чем минимально допустимое значение, указанное в таблице, то следует сменить дроссель. Если ток лампы не выходит за нижний предел, значит, лампа должна быть заменена, поскольку в ней мало ртути.

    Если при включении установки перегорают спирали лампы, то должен быть заменен дроссель, т.к. в его обмотке частично или полностью пробита изоляция.

    При любой неисправности в установке с люминесцентными лампами установка должна быть немедленно отключена. Причина неисправности должна быть выяснена и устранена, поскольку неисправность одного элемента может привести к порче других.

    VoltLand.ru

    Исправный люминесцентный светильник при включении загорается сразу. Иногда при запуске моргает (один-два раза), что является нормой: это происходит поджиг газа, после чего лампа начинает ровно светить.

    Но иногда случается, что в процессе нормальной работы, лампа вдруг начинает мигать. Это может продолжаться длительное время и сопровождаться несильным гулом или потрескиванием.

    Когда лампы дневного света моргают длительное время при запуске или в процессе эксплуатации, это говорит о неисправности в светильнике: вышел из строя один из элементов. Давайте рассмотрим, какие бывают неисправности и почему не загорается ЛДС.

    Конструкция люминесцентного светильника

    Чтобы понимать причину поломки, давайте рассмотрим, какие составные элементы и детали входят в конструкцию ЛДС:

    • Корпус;
    • Люминесцентная лампа, выполненная в виде длинной трубки;
    • Патроны (по два на каждую колбу);
    • Дроссель и стартер. Эти элементы обеспечивают подачу нужного напряжения, что позволяет поджечь газ, чтобы вызвать его свечение;
    • Конденсатор устраняет помехи, вызванные другими устройствами, включенными в сеть.

    При неправильной эксплуатации или с течением времени, любой элемент может выйти из строя, что приведет к неправильной работе лампы.

    Основные виды неисправностей и методы их устранения

    Прежде всего, нужно проверить, есть ли напряжение на контактах лампы и стартера. Если напряжение отсутствует, нужно заменить эти элементы, и светильник начнет работать нормально.

    Но случаются ситуации (причем довольно часто), когда напряжение есть, а ЛДС не загорается или часто моргает. Почему это происходит? Рассмотрим все самые распространенные поломки и причины.

    1. Если люминесцентная лампа при включении не мигает, но и не загорается, мог произойти разрыв цепи. Для его обнаружения следует прозвонить цепь при помощи мультиметра. Иногда случаются ситуации, когда просто вышла из строя вилка прибора или отсоединился провод, например, от балластного сопротивления или держателя;
    2. Иногда при включении ЛДС слабое свечение возникает только с одного конца светильника. При этом слышны потрескивания, но свечение не усиливается. Причиной этого может быть короткое замыкание в патроне или проводке. Приведем два способа решения этой проблемы:
      1. Лампу нужно перевернуть, чтобы светящийся и неработающий конец вошли в другие патроны. Если свечение не восстановилось, необходимо заменить колбу;
      2. Если после замены работоспособность лампы не восстановилась, нужно проверить целостность патронов или проводки.
    3. Еще одной поломкой ЛДС является вариант, когда на концах колбы возникает желтое свечение, которое со временем гаснет. Такую лампу необходимо заменить, поскольку произошла разгерметизация колбы, и в нее попал воздух;
    4. Через некоторое время нормальной работы лампы может наблюдаться потемнение ее концов. В этом случае нужно проверить дроссель: снять показания рабочего и пускового тока. При такой неисправности, эти токи часто повышены, что и приводит к потемнению колбы. Требуется заменить дроссель новым;
    5. Если при работе светильника периодически возникают темные пятна или проскакивают змейки электрического разряда, но свечение продолжается, возможно, неисправен стартер. Для более точного определения, почему это происходит, снимается рабочий ток на лампе. Если он повышен, заменяют дроссель. При нормальных значениях тока, колбу нужно повернуть в патронах несколько раз. Если свечение не восстановилось, лампа подлежит замене;
    6. При постепенном уменьшении светового потока, также нужно замерить рабочий ток. Если он выше нормы, то причина, почему лампа светит не на полную мощность, в дросселе. При показателях в пределах нормы, следует заменить лампу: в ней оказалось недостаточное количество ртути.

    Кроме этого, люминесцентные лампы моргают, но могут не загораться, по внешним факторам:

    • Температура ниже +5 °C (такие светильники должны устанавливаться только внутри помещений);
    • Низкое напряжение в сети (отклонение более 10% от нормы).

    Эти факторы влияют на нормальную работу ЛДС и могут стать одной из причин того, что лампа не загорается.

    При обнаружении любой неисправности, ЛДС должна быть немедленно обесточена. Нужно не только выяснить причину, но и устранить неисправность. Некорректная работа одного элемента осветительной установки может вызвать повреждения остальных деталей.

    Классификация люминесцентных ламп

    Без сомнения, светильники на основе люминесцентных трубок очень популярны. Это, прежде всего, стало причиной потрясающей экономичности такого источника освещения. При потреблении в 5 раз меньше электроэнергии, ЛДС дает световой поток примерно в 1,5 раза превышающий от лампы накаливания.

    Также немалую роль сыграла и долговечность таких ламп. Поэтому хоть такой прибор и более «капризный», но ЛДС получили широкую популярность и распространение. Моделей таких приборов освещения существует большое количество, поэтому при выборе важно обращать внимание на маркировку, которая наносится на колбу.

    Давайте рассмотрим основные параметры:

    • Мощность. Основной параметр, которым характеризуется любой потребитель. Но в люминесцентных светильниках этот показатель наглядно показывает, насколько этот осветительный прибор экономичнее обычной лампы. Обозначается в ваттах (W);
    • От диаметра колбы во многом зависит яркости и спектр светимости: чем толще лампа, тем ярче она светит. Диаметр обозначается в миллиметрах (мм). Некоторые производители через дробь указывают длину колбы, также в миллиметрах;
    • Кроме этого, на колбе имеется маркировка, указывающая, какой пуск необходим этому устройству: RS – без стартерные, PHs – необходим стартер для правильной работы.

    Также на колбу наносится еще одна маркировка, обозначающая форму. Линейная (прямая) форма маркировки не имеет, а различные фигурные и сложные конструкции маркируются следующим образом: U (дугообразные), R (с рефлектором), S (спиралевидная), C (свеча), G (кольцевые), T (в виде таблетки).

    В заключение расскажем о производителях люминесцентных ламп, которые выпускают продукцию высокого качества, признанного во всем мире. Прежде всего, это бренд General Electric, лидер в этой отрасли. Затем стоит отметить таких производителей: Philips, Osram, Narva, Foton, Sylvania и другие.

    Люминесцентные светильники давно вышли за пределы обычных прямых колб. Сегодня это более десятка различных форм, яркости и цвета свечения. Надеемся, наша статья поможет вам не только выбрать, но в случае неисправности, и починить люминесцентную лампу.

    Понравилась статья? Поделитесь:

    Источники: http://stroimdelaem.ru/prichiny-miganiya-lyuminescentnoj-lampy/, http://www.diy.ru/post/1807/, http://voltland.ru/svet/lyuminescentnaya-lampa-morgaet-no-ne-zagoraetsya.html